赞
踩
Interesting thing!
About Bert you just need to know that it is like gpt, but focus on pre-training Encoder instead of decoder. It has a mask method which enhances its precision remarkbably. (judge not only the word before the blank but the later one )
model : BertForSequenceClassfication constructs the model and load the config and set the sentiment classification to 3 kinds
- model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels = 3)
- model = auto_mixed_precision(model, '01')
- optimizer = nn.Adam(model.trainable_params(), learning_rate = 2e-5)
- metric = Accuracy()
- ckpoint_cb = CheckpointCallback(save_path = 'checkpoint', ckpt_name = 'bert_emotect', epochs = 1, keep_checkpoint_max = 2)
- best_model_cb = BestModelCallback(save_path = 'checkpoint', ckpt_name = 'bert_emotect_best', auto_load = True)
- trainer = Trainer(network = model, train_dataset = dataset_train,
- eval_dataset=dataset_val, metrics = metric,
- epochs = 5, optimizer = optimizer, callback = [ckpoint_cb, best_model_cb])
- trainer.run(tgt_columns = 'labels')
the model validation and prediction are the same mostly like Sentiment by any model:
- evaluator = Evaluator(network = model, eval_dataset = dataset_test, metrics= metric)
- evaluator.run(tgt_columns='labels')
-
- dataset_infer = SentimentDataset('data/infer.tsv')
- def predict(text, label = None):
- label_map = {0:'消极', 1:'中性', 2:'积极'}
- text_tokenized = Tensor([tokenizer(text).input_ids])
- logits = model(text_tokenized)
- predict_label = logits[0].asnumpy().argmax()
- info = f"inputs:'{text}',predict:
- '{label_map[predict_label]}'"
- if label is not None:
- info += f", label:'{label_map[label]}'"
- print(info)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。