赞
踩
torch.flatten(x)等于torch.flatten(x,0)默认将张量拉成一维的向量,也就是说从第一维开始平坦化,torch.flatten(x,1)代表从第二维开始平坦化。
- import torch
- x=torch.randn(2,4,2)
- print(x)
-
- z=torch.flatten(x)
- print(z)
-
- w=torch.flatten(x,1)
- print(w)
-
- 输出为:
- tensor([[[-0.9814, 0.8251],
- [ 0.8197, -1.0426],
- [-0.8185, -1.3367],
- [-0.6293, 0.6714]],
-
- [[-0.5973, -0.0944],
- [ 0.3720, 0.0672],
- [ 0.2681, 1.8025],
- [-0.0606, 0.4855]]])
-
- tensor([-0.9814, 0.8251, 0.8197, -1.0426, -0.8185, -1.3367, -0.6293, 0.6714,
- -0.5973, -0.0944, 0.3720, 0.0672, 0.2681, 1.8025, -0.0606, 0.4855])
-
-
- tensor([[-0.9814, 0.8251, 0.8197, -1.0426, -0.8185, -1.3367, -0.6293, 0.6714]
- ,
- [-0.5973, -0.0944, 0.3720, 0.0672, 0.2681, 1.8025, -0.0606, 0.4855]
- ])
torch.flatten(x,0,1)代表在第一维和第二维之间平坦化
- import torch
- x=torch.randn(2,4,2)
- print(x)
-
- w=torch.flatten(x,0,1) #第一维长度2,第二维长度为4,平坦化后长度为2*4
- print(w.shape)
-
- print(w)
-
- 输出为:
- tensor([[[-0.5523, -0.1132],
- [-2.2659, -0.0316],
- [ 0.1372, -0.8486],
- [-0.3593, -0.2622]],
-
- [[-0.9130, 1.0038],
- [-0.3996, 0.4934],
- [ 1.7269, 0.8215],
- [ 0.1207, -0.9590]]])
-
- torch.Size([8, 2])
-
- tensor([[-0.5523, -0.1132],
- [-2.2659, -0.0316],
- [ 0.1372, -0.8486],
- [-0.3593, -0.2622],
- [-0.9130, 1.0038],
- [-0.3996, 0.4934],
- [ 1.7269, 0.8215],
- [ 0.1207, -0.9590]])
-
对于torch.nn.Flatten(),因为其被用在神经网络中,输入为一批数据,第一维为batch,通常要把一个数据拉成一维,而不是将一批数据拉为一维。所以torch.nn.Flatten()默认从第二维开始平坦化。
- import torch
- #随机32个通道为1的5*5的图
- x=torch.randn(32,1,5,5)
-
- model=torch.nn.Sequential(
- #输入通道为1,输出通道为6,3*3的卷积核,步长为1,padding=1
- torch.nn.Conv2d(1,6,3,1,1),
- torch.nn.Flatten()
- )
- output=model(x)
- print(output.shape) # 6*(7-3+1)*(7-3+1)
-
- 输出为:
-
- torch.Size([32, 150])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。