赞
踩
随着深度学习模型复杂度和数据集规模的增大,计算效率成为了不可忽视的问题。GPU凭借强大的并行计算能力,成为深度学习加速的标配。然而,由于服务器的显存非常有限,随着训练样本越来越大,显存连一个样本都容不下的现象频频发生。除了升级硬件(烧钱)、使用分布式训练(费力),你知道还有哪些方法吗?即使显存充足,所有运算都在GPU上执行就是最高效吗?只要掌握以下小知识,模型训练的种种问题统统搞定,省时省力省钱,重点是高效!
其实CPU和GPU是协同工作的,如果能合理地利用它们各自的优势,就能够节省显存资源(显存不够内存来凑),甚至获得更好的训练性能。本文为您提供了device_guard接口,只需要一行命令,即可实现GPU和CPU的混合训练,不仅可以解决训练模型时通过调整批尺寸(batch size)显存依然超出的问题,让原本无法在单台服务器执行的模型可以训练,同时本文还给出了提高GPU和CPU混合训练效率的方法,将服务器资源利用到极致,帮助您提升模型的性能!
模型训练的特点
深度学习任务通常使用GPU进行模型训练。这是因为GPU相对于CPU具有更多的算术逻辑单元(ALU),可以发挥并行计算的优势,特别适合计算密集型任务,可以更高效地完成深度学习模型的训练。GPU模式下的模型训练如图1所示,总体可以分为4步:
第1步,将输入数据从系统内存拷贝到显存。
第2步,CPU指示GPU处理数据。
第3步,GPU并行地完成一系列的计算。
第4步,将计算结果从显存拷贝到内存。
图1 模型训练示意图
从图中可以了解到,虽然GPU并行计算能力优异,但无法单独工作,必须由CPU进行控制调用;而且显存和内存之间的频繁数据拷贝也可能会带来较大的性能开销。CPU虽然计算能力不如GPU,但可以独立工作,可以直接访问内存数据完成计算。因此,想获得更好的训练性能,需要合理利用GPU和CPU的优势。
问题一:GPU显存爆满,资源不足
你建的模型不错,在这个简洁的任务中可能成为新的SOTA,但每次尝试批量处理更多样本时,你都会得到一个CUDA RuntimeError:out of memory。
这是因为GPU卡的显存是非常有限的,一般远低于系统内存。以V100为例,其显存最高也仅有32G,甚至有些显存仅12G左右。因此当模型的参数量较大时,在GPU模式下模型可能无法训练起来。
设置CPU模式进行模型训练,可以避免显存不足的问题,但是训练速度往往太慢。
那么有没有一种方法,可以在单机训练中充分地利用GPU和CPU资源,让部分层在CPU执行,部分层在GPU执行呢?
问题二:频繁数据拷贝,训练效率低
在显存足够的情况下,我们可以直接采用GPU模式去训练模型,但是让所有的网络层都运行在GPU上就一定最高效吗?其实GPU只对特定任务更快,而CPU擅长各种复杂的逻辑运算。框架中有一些OP会默认在CPU上执行,或者有一些OP的输出会被存储在CPU上,因为这些输出往往需要在CPU上访问。这就会导致训练过程中,CPU和GPU之间存在数据拷贝。
图2是CPU和GPU数据传输示意图。假设模型的中间层存在下图中的4个算子。其中算子A和算子B都在CPU执行,因此B可以直接使用A的输出。算子C和算子D都在GPU上执行,那么算子D也可以直接使用C的输出。但是算子B执行完,其输出在CPU上,在算子C执行时,就会将B的输出从CPU拷贝到GPU。
频繁的数据拷贝,也会影响模型的整体性能。如果能把算子A和B设置在GPU上执行,或者算子C和D设置在CPU上执行,避免数据传输,或许会提升模型性能。那么应该如何更加合理地为算子分配设备,使得训练过程更加高效呢?我们需要更综合地考虑,在发挥GPU和CPU各自计算优势的前提下,降低数据拷贝带来的时间消耗。
图2 CPU和GPU数据传输示意图
上面两个场景都是希望为模型中的部分层指定运行设备。飞桨提供了fluid.CUDAPlace和fluid.CPUPlace用于指定运行设备,但这两个接口在指定设备时是二选一的,也就是说要么在GPU模式下训练,要么在CPU模式下训练。过去我们无法指定某一部分计算在GPU上执行还是在CPU上执行。飞桨开源框架从1.8版本开始提供了device_guard接口,使用该接口可以为网络中的计算层指定设备为CPU或者GPU,实现更灵活的异构计算调度。
如何使用device_guard接口解决上面两个场景中提到的问题呢?接下来,我们看看具体的例子。
好处一:充分利用CPU资源,避免显存超出
如果使用fluid.CUDAPlace指定了全局的运行设备,飞桨将会自动把支持GPU计算的OP分配在GPU上执行,然而当模型参数量过大并且显存有限时,很可能会遇到显存超出的情况。如下面的示例代码,embedding层的参数size包含两个元素,第一个元素为vocab_size(词表大小),第二
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。