当前位置:   article > 正文

LLM大模型快速入门+学习路线推荐_llm大模型自学路线

llm大模型自学路线

什么是大模型

大模型,是指在人工智能领域,特别实在自然语言处理和机器学习中,拥有大量参数的深度学习模型。
这些模型通过在大规模数据集上进行训练,能够学到丰富的数据表示和模式,从而在各种任务上表现出色,如文本生成,语言理解,图像识别等。
大模型是具有大量参数和复杂结构的模型,这些模型通常具数十亿甚至数万亿个参数,能够处理大规模的数据和复杂的任务。
通常使用深度学习技术,如深度神经网络,可以从数据中学习并提取特征来执行各种任务。

如何学习

前置知识 Python基础 Linux基础

(1)学习目的

  • 掌握Python基础,熟悉常用的Python库和工具,如NumPy、Pandas、Matplotlib、Scikit-learn、TensorFlow、PyTorch等
  • 具备NLP相关的基础知识,包括文本预处理、分词、词性标注、命名实体识别、词向量表示等。
  • 对大模型有一定了解,包括transfermer模型的结构和原理、基于注意力机制的自然语言处理技术等。
    (2)参考内容
  • 廖雪峰Python教程
    (3)学习要求
  • 熟练掌握并能够编写基础的Python函数、语法等,能够熟练使用Linux系统
Step1:NPL相关基础知识

(1)学习目的

  • 了解文本预处理、分词、词性标注、命名实体识别、词向量表示等基础知识
  • 掌握自然语言处理(NPL)相关技术,如分词、词性标注、命名实体识别、句法分析等。
  • 掌握机器学习的数据预处理、特征提取、分类、回归等基础算法,并了解在NPL领域的应用。
  • 了解大规模NPL任务中的常用技术和方法,如深度学习中的transfermer模型、BERT、GPT等。
    (2)参考内容
    李沐 动手学深度学习
    (3)学习要求
    理解并掌握机器学习、深度学习、自然语言处理的基础概念,最好能阅读并吸收课程中提到的经典论文,能够独立实现在colab上训练模型(小模型)
Step2:GPT API调用及Prompt设计

(1)学习目的

  • 了解GPT API的调用方式和基本操作,熟悉Prompt设计技巧和要点,能够结合自己的任务调用API实现对应的任务代码
    (2)学习要求
    了解大模型以及对应NPL知识的基础原理,能够熟练调用GPT API,编写Prompt完成各种任务
Step3:模型微调

(1)学习目的:了解常见的微调模型的基本流程和原理,熟练数据集的构造、训练、评估等过程,能够独立构建QA对,在服务器上对模型进行微调
(2)学习要求
能够独立完成大模型的微调数据构建、训练以及部署工作

Step4:RAG(外挂数据库)

(1)学习目的
RAG作为目前最火的一个LLM落地方向,可以结合私有数据(表格、word、txt、pdf、数据库皆可)实现本地回答,且训练成本较低,可以快速实现效果
(2)学习内容

  • LangChain
  • FastGPT
  • LangChain-Chatchat(快速部署框架)
  • DB-GPT
    (3)学习要求
    能够在本地实现基于大模型的外挂部署方案。

如何系统的去学习并入门AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/1011984
推荐阅读
相关标签