赞
踩
对D的输入添加噪声,在训练的过程中将引导噪声样本向真实数据流形的方向移动,可以看成是引导样本的一个小邻域向真实数据移动。这可以解决D极度容易受到生成样本的影响的问题。
定理5表明,如果分布的支撑集在低维流形上,KL散度、JS散度和TV距离并不是好的loss,而地动(EM)距离则很合适。这启发我们可以用地动距离来设计loss以替换原来GAN采用的KL散度。
定理6证明了若D和G的学习能力足够强的话(因此目标函数能够被最大化),WGAN是有解的。WGAN的算法流程如下: