当前位置:   article > 正文

CloudCompare——点云平面拟合

点云平面拟合

在这里插入图片描述

本文由CSDN点云侠原创,原文链接。爬虫网站自重。博客长期更新,本文最新更新时间为:2023年8月6日。

1.平面拟合

  设拟合出的平面方程为:
a x + b y + c z + d = 0 (1) ax+by+cz+d=0\tag{1} ax+by+cz+d=0(1)
约束条件为: a 2 + b 2 + c 2 = 1 (2) a^2+b^2+c^2=1\tag{2} a2+b2+c2=1(2)
可以得到平面参数 a 、 b 、 c 、 d a、b、c、d abcd。此时,要使获得的拟合平面是最佳的,就是使点到该平面的距离的平方和最小,即满足:
e = ∑ i = 1 n d i 2 → m i n (3) e=\sum_{i=1}^nd_i^2\rightarrow min\tag{3} e=i=1ndi2min(3)
式中, d i d_i di点云数据中的任一点 p i ( x i , y i , z i ) p_i(x_i,y_i,z_i) pi(xi,yi,zi)到这个平面的距离 d i = ∣ a x i + b y i + c z i + d ∣ d_i=|ax_i+by_i+cz_i+d| di=axi+byi+czi+d。要使 e → m i n e\rightarrow min emin,可以用 S V D SVD SVD矩阵分解得到。
  推导过程如下:
所有点的平均坐标为 ( x ˉ . y ˉ , z ˉ ) (\bar{x}.\bar{y},\bar{z}) (xˉ.yˉ,zˉ),则:
a x ˉ + b y ˉ + c z ˉ + d = 0 (4) a\bar{x}+b\bar{y}+c\bar{z}+d=0\tag{4} axˉ+byˉ+czˉ+d=0(4)
式(1)与式(4)相减得:
a ( x i − x ˉ ) + b ( y i − y ˉ ) + c ( z i − z ˉ ) = 0 (5) a(x_i-\bar{x})+b(y_i-\bar{y})+c(z_i-\bar{z})=0\tag{5} a(xixˉ)+b(yiyˉ)+c(zizˉ)=0(5)
假设矩阵:
A = [ x 1 − x ˉ y 1 − y ˉ z 1 − z ˉ x 2 − x ˉ y 2 − y ˉ z 2 − z ˉ x 3 − x ˉ y 3 − y ˉ z 3 − z ˉ ⋯ x n − x ˉ y n − y ˉ z n − z ˉ ] A=\left[ x1ˉxy1ˉyz1ˉzx2ˉxy2ˉyz2ˉzx3ˉxy3ˉyz3ˉzxnˉxynˉyznˉz

\right] A= x1xˉx2xˉx3xˉxnxˉy1yˉy2yˉy3yˉynyˉz1zˉz2zˉz3zˉznzˉ
列矩阵:
X = [ a b c ] X=\left[ abc
\right]
X= abc

则式(5)等价于:
A X = 0 (6) AX=0\tag{6} AX=0(6)
理想情况下所有点都在平面上,式(6)成立;实际情况下有部分点在平面外,拟合的目的为平面距离所有点的距离之和尽量小,所以目标函数为:
m i n ∣ ∣ A X ∣ ∣ (7) min||AX||\tag{7} min∣∣AX∣∣(7)
约束条件为:

∣ ∣ X ∣ ∣ = 1 (8) ||X||=1\tag{8} ∣∣X∣∣=1(8)
A A A可做奇异值分解:
A = U D V T (9) A=UDV^T\tag{9} A=UDVT(9)
则:
∣ ∣ A X ∣ ∣ = ∣ ∣ U D V T X ∣ ∣ = ∣ ∣ D V T X ∣ ∣ (10) ||AX||=||UDV^TX||=||DV^TX||\tag{10} ∣∣AX∣∣=∣∣UDVTX∣∣=∣∣DVTX∣∣(10)
其中: V T X V^TX VTX为列矩阵,并且:
∣ ∣ V T X ∣ ∣ = ∣ ∣ X ∣ ∣ = 1 (11) ||V^TX||=||X||=1\tag{11} ∣∣VTX∣∣=∣∣X∣∣=1(11)
因为 D D D的对角元素为奇异值,假设最后一个对角元素为最小奇异值,则当且仅当:
V T X = [ 0 0 0 ⋯ 1 ] (12) V^TX=\left[ 0001

\right]\tag{12} VTX= 0001 (12)
时,式(10)可以取得最小值,即式(7)成立。此时:
X = V [ 0 0 0 ⋯ 1 ] = [ v 1 v 2 v 3 ⋯ v n ] [ 0 0 0 ⋯ 1 ] (13) X=V\left[ 0001
\right] =\left[ v1v2v3vn
\right] \left[ 0001
\right]\tag{13}
X=V 0001 =[v1v2v3vn] 0001 (13)

目标函数(7)在约束条件(8)下的最优解为:
X = ( a , b , c ) = ( v n , 1 , v n , 2 , v n , 3 ) (14) X=(a,b,c)=(v_{n,1},v_{n,2},v_{n,3})\tag{14} X=(a,b,c)=(vn,1,vn,2,vn,3)(14)
所以, e e e的最小值就是矩阵 A A A的最小特征值,对应的特征向量为平面参数 a 、 b 、 c a、b、c abc ,利用质心可求得 d d d

2.参考文献

[1]安超,赵文政,刘银华.面向车身虚拟匹配的非均匀点云数据配准算法[J].机械设计与研究,2021,37(04):129-134.DOI:10.13952/j.cnki.jofmdr.2021.0151.

3.操作流程

  通过Tools > Fit > Plane菜单访问。该工具在点云上拟合一个平面,并输出各种信息,如拟合均数、平面法线,甚至地质倾角和倾角方向值。
在这里插入图片描述
在这里插入图片描述

在控制台中,将输出以下信息:
在这里插入图片描述

  • 平面拟合的RMSE
  • 平面法向量(法向方向默认为指向Z坐标轴的正方向)
  • 倾角和倾角方向
  • 一个能够使拟合平面调整为水平的4x4变换矩阵

注意:

  • 拟合出的平面会被添加到DB树中,作为点云的子节点
  • 拟合出来的是一种“三角网格”。因此,可以使用Tools > Distances > Cloud/Mesh dist计算它们之间的距离

4.完整操作

在这里插入图片描述

5.算法源码

void MainWindow::doComputePlaneOrientation(bool fitFacet)
{
	if (!haveSelection())
		return;

	double maxEdgeLength = 0.0;
	if (fitFacet)
	{
		bool ok = true;
		static double s_polygonMaxEdgeLength = 0.0;
		maxEdgeLength = QInputDialog::getDouble(this, "Fit facet", "Max edge length (0 = no limit)", s_polygonMaxEdgeLength, 0, 1.0e9, 8, &ok);
		if (!ok)
			return;
		s_polygonMaxEdgeLength = maxEdgeLength;
	}

	ccHObject::Container selectedEntities = getSelectedEntities(); //warning, getSelectedEntites may change during this loop!
	bool firstEntity = true;
	
	for (ccHObject *entity : selectedEntities) 
	{
		ccShiftedObject* shifted = nullptr;
		CCLib::GenericIndexedCloudPersist* cloud = nullptr;

		if (entity->isKindOf(CC_TYPES::POLY_LINE))
		{
			ccPolyline* poly = ccHObjectCaster::ToPolyline(entity);
			cloud = static_cast<CCLib::GenericIndexedCloudPersist*>(poly);
			shifted = poly;
		}
		else
		{
			ccGenericPointCloud* gencloud = ccHObjectCaster::ToGenericPointCloud(entity);
			if (gencloud)
			{
				cloud = static_cast<CCLib::GenericIndexedCloudPersist*>(gencloud);
				shifted = gencloud;
			}
		}

		if (cloud)
		{
			double rms = 0.0;
			CCVector3 C;
			CCVector3 N;

			ccHObject* plane = nullptr;
			if (fitFacet)
			{
				ccFacet* facet = ccFacet::Create(cloud, static_cast<PointCoordinateType>(maxEdgeLength));
				if (facet)
				{
					plane = static_cast<ccHObject*>(facet);
					N = facet->getNormal();
					C = facet->getCenter();
					rms = facet->getRMS();

					//manually copy shift & scale info!
					if (shifted)
					{
						ccPolyline* contour = facet->getContour();
						if (contour)
						{
							contour->setGlobalScale(shifted->getGlobalScale());
							contour->setGlobalShift(shifted->getGlobalShift());
						}
					}
				}
			}
			else
			{
				ccPlane* pPlane = ccPlane::Fit(cloud, &rms);
				if (pPlane)
				{
					plane = static_cast<ccHObject*>(pPlane);
					N = pPlane->getNormal();
					C = *CCLib::Neighbourhood(cloud).getGravityCenter();
					pPlane->enableStippling(true);
				}
			}

			//as all information appears in Console...
			forceConsoleDisplay();

			if (plane)
			{
				ccConsole::Print(QString("[Orientation] Entity '%1'").arg(entity->getName()));
				ccConsole::Print("\t- plane fitting RMS: %f", rms);

				//We always consider the normal with a positive 'Z' by default!
				if (N.z < 0.0)
					N *= -1.0;
				ccConsole::Print("\t- normal: (%f,%f,%f)", N.x, N.y, N.z);
				//we compute strike & dip by the way
				PointCoordinateType dip = 0.0f;
				PointCoordinateType dipDir = 0.0f;
				ccNormalVectors::ConvertNormalToDipAndDipDir(N, dip, dipDir);
				QString dipAndDipDirStr = ccNormalVectors::ConvertDipAndDipDirToString(dip, dipDir);
				ccConsole::Print(QString("\t- %1").arg(dipAndDipDirStr));

				//hack: output the transformation matrix that would make this normal points towards +Z
				ccGLMatrix makeZPosMatrix = ccGLMatrix::FromToRotation(N, CCVector3(0, 0, PC_ONE));
				CCVector3 Gt = C;
				makeZPosMatrix.applyRotation(Gt);
				makeZPosMatrix.setTranslation(C-Gt);
				ccConsole::Print("[Orientation] A matrix that would make this plane horizontal (normal towards Z+) is:");
				ccConsole::Print(makeZPosMatrix.toString(12,' ')); //full precision
				ccConsole::Print("[Orientation] You can copy this matrix values (CTRL+C) and paste them in the 'Apply transformation tool' dialog");

				plane->setName(dipAndDipDirStr);
				plane->applyGLTransformation_recursive(); //not yet in DB
				plane->setVisible(true);
				plane->setSelectionBehavior(ccHObject::SELECTION_FIT_BBOX);

				entity->addChild(plane);
				plane->setDisplay(entity->getDisplay());
				plane->prepareDisplayForRefresh_recursive();
				addToDB(plane);

				if (firstEntity)
				{
					m_ccRoot->unselectAllEntities();
					m_ccRoot->selectEntity(plane);
				}
			}
			else
			{
				ccConsole::Warning(QString("Failed to fit a plane/facet on entity '%1'").arg(entity->getName()));
			}
		}
	}

	refreshAll();
	updateUI();
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136

6.相关代码

[1] PCL 最小二乘平面拟合(SVD法)
[2] PCL 使用RANSAC拟合平面
[3] PCL RANSAC分割多个平面
[4] PCL 中实现平面模型分割
[5] Open3D 最小二乘拟合平面(SVD法)
[6] Open3D——RANSAC三维点云平面拟合
[7] Open3D 使用RANSAC分割平面
[8] matlab RANSAC拟合平面
[9] matlab 最小二乘拟合平面(SVD法)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/109093
推荐阅读
相关标签
  

闽ICP备14008679号