赞
踩
源码在:https://github.com/elena-petrova/rossmann_TSA_forecasts
翻译的目的是为了学习商业数据分析的一些套路,师夷长技以自强!
numpy,pandas,matplotlib, seaborn,statsmodels
import warnings warnings.filterwarnings("ignore") # loading packages # basic + dates import numpy as np import pandas as pd from pandas import datetime # data visualization import matplotlib.pyplot as plt import seaborn as sns # advanced vizs %matplotlib inline # statistics from statsmodels.distributions.empirical_distribution import ECDF # time series analysis from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
# importing train data to learn
train = pd.read_csv("train.csv",
parse_dates = True, low_memory = False, index_col = 'Date')
# additional store data
store = pd.read_csv("store.csv",
low_memory = False)
这里可以了解一下参数:parse_dates,low_memory的作用哦
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。