当前位置:   article > 正文

pytorch -- torch.nn下的常用损失函数

pytorch -- torch.nn下的常用损失函数

1.基础

loss function损失函数:预测输出与实际输出 差距 越小越好

- 计算实际输出和目标之间的差距
- 为我们更新输出提供依据(反向传播

1. L1
torch.nn.L1Loss(size_average=None, reduce=None, reduction=‘mean’)
2. 平方差(L2)
torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)
3. 交叉熵
torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction=‘mean’, label_smoothing=0.0)

2. 例子

代码:

import torch
from torch import nn

input = torch.tensor([1,2,3],dtype=torch.float32)
input = torch.reshape(input,[1,1,1,3])
target = torch.tensor([1,2,5],dtype=torch.float32)
target = torch.reshape(target,[1,1,1,3])
# L1
l1 = nn.L1Loss(reduction='sum')
result1 = l1(input,target)
print(result1)
# L2
l2 = nn.MSELoss()
result2 = l2(input,target)
print(result2)

# 交叉熵损失
x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,[1,3])
loss_cross = nn.CrossEntropyLoss()
result = loss_cross(x,y)
print(result)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

输出
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/150903
推荐阅读
相关标签
  

闽ICP备14008679号