当前位置:   article > 正文

MATLAB实现多目标粒子群优化算法(MOPSO)_aga-mopso程序

aga-mopso程序

MATLAB实现多目标粒子群优化算法(MOPSO)

这里如何用MATLAB实现多目标粒子群优化算法
本教程参考:MATLAB实现多目标粒子群算法
对其中的优化项、优化目标项进行了简单的修改。优化项由1个修改成了2个,优化目标由2个修改成了3个。

同时,参考MATLAB源码,将该算法在C#上也进行了实现,有需要的可以参考:C#实现多目标粒子群优化算法(MOPSO)

程序源码下载链接:

链接:https://pan.baidu.com/s/1UML4slk6PN9rMFN8rbxP9g
提取码:hzdz

程序运行效果:

有2个优化目标函数,并且优化目标函数设置合理的情况下,理想情况下,MOPSO的优化结果在平面内成线状
有3个优化目标函数,并且优化目标函数设置合理的情况下,理想情况下,MOPSO的优化结果在空间内成面状,如下图所示。
在这里插入图片描述

在这里插入图片描述

MATLAB主要程序如下:

其中,1为MOPSO的主程序,2-11均为函数。

1、MOPSO的主程序

clc;
clear;
close all;
CostFunction = @(x) evaluate_objective(x);  %目标函数ZDT1
nVar = 2;                                     %变量个数
VarSize = [1 nVar];                            %变量矩阵大小
VarMin = 0;                                    %变量值定义域
VarMax = 360;                                  %注意: 该函数变量不能出现负值
MaxIt = 30;                                   %最大迭代次数
N = 40;                                        %种群规模
nRep = 50;                                     %档案库大小
w = 0.9;                                       %惯性权重系数
wdamp = 0.99;                                  %惯性权重衰减率
c1 = 1.7;                                      %个体学习因子
c2 = 1.8;                                      %全局学习因子
nGrid = 5;                                     %每一维的分格数
alpha = 0.1;                                   %膨胀率
beta = 2;                                      %最佳选择压
gamma = 2;                                     %删除选择压
mu = 0.1;                                      %变异概率
empty_particle.Position = [];                  %粒子位置向量
empty_particle.Velocity = [];                  %粒子速度向量
empty_particle.Cost = [];                      %粒子目标值向量
empty_particle.Best.Position = [];             %粒子最佳位置向量
empty_particle.Best.Cost = [];                 %粒子最佳目标值向量
empty_particle.IsDominated = [];               %粒子被支配个体向量
empty_particle.GridIndex = [];                 %粒子栅格索引向量
empty_particle.GridSubIndex = [];              %粒子栅格子索引向量
pop = repmat(empty_particle,N,1);              %repmat平铺矩阵%粒子初始空矩阵

for i = 1:N  %初始化N个个体
     % 产生服从均匀分布, VarSize大小的位置矩阵
     pop(i).Position = unifrnd(VarMin,VarMax,VarSize);
     pop(i).Velocity = zeros(VarSize);
     pop(i).Cost = CostFunction(pop(i).Position);
     pop(i).Best.Position = pop(i).Position;
     pop(i).Best.Cost = pop(i).Cost;
end

pop = DetermineDomination(pop);
rep = pop(~[pop.IsDominated]);
Grid = CreateGrid(rep,nGrid,alpha);
for i = 1:numel(rep)
 rep(i) = FindGridIndex(rep(i),Grid);
 % GridIndex = 绝对位置,.GridSubIndex = 坐标位置
end

%MOPSO主循环
 for it = 1:MaxIt
     for i = 1:N %逐一个体更新速度和位置,0.5的概率发生变异
         leader = SelectLeader(rep,beta);   %从支配个体轮盘赌选出全局最佳个体
         rep = [rep;pop(~[pop.IsDominated])];   %添加新的最佳栅格位置到库
         pop(i).Velocity = w*pop(i).Velocity + ...
             c1*rand(VarSize).*(pop(i).Best.Position-pop(i).Position)+ ...
             c2*rand(VarSize).*(leader.Position-pop(i).Position);    %速度更新
         pop(i).Position = pop(i).Position+pop(i).Velocity;   %位置更新
         pop(i).Position = limitToPosition(pop(i).Position,VarMin,VarMax);   %限制变量变化范围
         pop(i).Cost = CostFunction(pop(i).Position);   %计算目标函数值
         %应用变异策略
         pm = (1-(it-1)/(MaxIt-1)^(1/mu));  % 变异概率逐渐变小
         NewSol.Position = Mutate(pop(i).Position,pm,VarMin,VarMax);
         NewSol.Cost = CostFunction(NewSol.Position);   % 计算变异后的目标值
         if Dominates(NewSol,pop(i))
             pop(i).Position = NewSol.Position;
             pop(i).Cost  = NewSol.Cost;
         else %0.5的概率决定是否接受变异
             if rand < 0.5
                 pop(i).Position = NewSol.Position;
                 pop(i).Cost = NewSol.Cost;
             end
         end
         if Dominates(pop(i),pop(i).Best)   % 如果当前个体优于先前最佳个体,则替换之
             pop(i).Best.Position = pop(i).Position;
             pop(i).Best.Cost = pop(i).Cost;
         else %0.5的概率替换个体最佳
             if rand <0.5
                 pop(i).Best.Position = pop(i).Position;
                 pop(i).Best.Cost = pop(i).Cost;
             end
         end
     end   %每个个体
     
     rep =  DetermineDomination(rep);
     rep = rep(~[rep.IsDominated]);
     Grid = CreateGrid(rep,nGrid,alpha); 
    for i =1:numel(rep) 
        rep(i) = FindGridIndex(rep(i),Grid); 
    end 
    if numel(rep) > nRep 
        Extra = numel(rep)-nRep; 
        for e = 1:Extra 
            rep = DeleteOneRepMemebr(rep,gamma); 
        end 
    end 
     
    disp(['迭代次数 =',num2str(it)]); 
    w = w*wdamp; 
end 

figure(1); 
location = [rep.Cost];   %取最优结果
scatter3(location(1,:),location(2,:),location(3,:),'filled','b'); 
xlabel('f1');ylabel('f2'); zlabel('f3');
title('Pareto 最优边界图'); 
box on; 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106

2、evaluate_objective.m(对应主程序中的CostFunction)

%============================= 
%计算目标函数值 
%============================= 
function f =evaluate_objective(x) 

f(1) = x(1)*0.01;%优化目标1
f(2) = (361-x(1))*(361-x(2))*0.02;%优化目标2
f(3) = x(2)*0.01;%优化目标3
        
f = [f(1);f(2);f(3)]; 

end

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

3、DetermineDomination.m

%============================= 
%判断全局支配状况,返回0 = 非支配解 
%============================= 
function pop =DetermineDomination(pop) 
        nPop = numel(pop); 
        for i =1:nPop 
            pop(i).IsDominated = false;   %初始化为互不支配 
        end 
        for i = 1:nPop-1 
            for j = i+1:nPop 
                if Dominates(pop(i),pop(j)) 
                    pop(j).IsDominated = true; 
                end 
                    if Dominates(pop(j),pop(i)) 
                        pop(i).IsDominated = true; 
                    end 
            end 
        end 
end 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

4、Dominates.m

%============================= 
%判断两个目标值x,y的支配状态 
% x支配y,返回1;y支配x,返回0 
%============================= 
function b = Dominates(x,y) 
        if isstruct(x) 
            x=x.Cost; 
        end 
        if isstruct(y) 
            y=y.Cost; 
        end 
        b=all(x<=y) && any(x<y); 
end 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

5、CreateGrid.m

%============================= 
%创建栅格矩阵 
%============================= 
function Grid = CreateGrid(pop,nGrid,alpha) 
        c = [pop.Cost]; 
        cmin = min(c,[],2); 
        cmax = max(c,[],2); 
        dc = cmax-cmin; 
        cmin = cmin-alpha*dc; 
        cmax = cmax+alpha*dc; 
        nObj = size(c,1); 
        empty_grid.LB = []; 
        empty_grid.UB = []; 
        Grid = repmat(empty_grid,nObj,1); 
         
        for j = 1:nObj 
            cj = linspace(cmin(j),cmax(j),nGrid+1); 
            Grid(j).LB = [-inf cj]; 
            Grid(j).UB = [cj +inf]; 
        end 
end 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

6、FindGridIndex.m

%============================= 
%栅格索引定位 
%============================= 
function particle = FindGridIndex(particle,Grid) 
        nObj = numel(particle.Cost); 
        nGrid = numel(Grid(1).LB); 
        particle.GridSubIndex = zeros(1,nGrid); 
        for j = 1:nObj 
            particle.GridSubIndex(j) = find(particle.Cost(j)<=Grid(j).UB,1,'first'); 
            %从左到右找到第一个目标值小于栅格值的位置 
        end 
        particle.GridIndex = particle.GridSubIndex(1); 
        for j = 2:nObj   % 左上角开始数到右下角,先数行再换行继续数 
            particle.GridIndex = particle.GridIndex-1; 
            particle.GridIndex = nGrid*particle.GridIndex; 
            particle.GridIndex = particle.GridIndex + particle.GridSubIndex(j); 
        end 
end

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

7、limitToPosition.m

%============================= 
%限制变量变化范围在定义域内 
%============================= 
function Position = limitToPosition(Position,VarMin,VarMax)     
        for i =1:size(Position,2) 
            if Position(i)<VarMin 
                Position(i) = VarMin; 
            elseif Position(i) > VarMax 
                Position(i) = VarMax; 
            end 
        end 
end 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

8、SelectLeader.m

%============================= 
%从全局支配个体中找出一个最佳个体 
%============================= 
function leader = SelectLeader(rep,beta) 
        GI = [rep.GridIndex]; 
        OC = unique(GI); 
        %一个栅格可能被多个支配解占用 
        N = zeros(size(OC)); 
        for k =1:numel(OC) 
            N(k) = numel(find(GI == OC(k))); 
        end 
        % 计算选择概率,为了增加多样性,尽量不选多次出现的个体 
        % 如果N大P就小, 即多次出现的栅格点被选中的概率小 
        P = exp(-beta*N); 
        P = P/sum(P);  
        sci = RouletteWheelSelection(P);   %轮盘赌策略选择 
        sc = OC(sci);   % 轮盘赌选择的栅格点 
        SCM = find(GI==sc); 
        smi = randi([1 numel(SCM)]); 
        sm = SCM(smi); 
        leader = rep(sm);   %当前全局最佳位置点
end 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

9、RouletteWheelSelection.m

%============================= 
%轮盘赌选择一个较好的支配个体 
%============================= 
function i = RouletteWheelSelection(P) 
        r = rand; 
        C = cumsum(P); 
        i = find(r<=C,1,'first'); 
end

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

10、Mutate.m

%============================= 
%使用变异策略 
%============================= 
function xnew = Mutate(x,pm,VarMin,VarMax) 
        nVar = numel(x); 
        j = randi([1 nVar]); 
        dx = pm*(VarMax-VarMin); 
        lb = x(j)-dx; 
        if lb<VarMin 
            lb=VarMin; 
        end 
        ub = x(j)+dx; 
        if ub > VarMax 
            ub = VarMax; 
        end 
        xnew = x; 
        xnew(j) = unifrnd(lb,ub); 
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

11、DeleteOneRepMemebr.m

%============================= 
%删除档案库中的一个个体 
%============================= 
function rep = DeleteOneRepMemebr(rep,gamma) 
        GI = [rep.GridIndex]; 
        OC = unique(GI); 
        N = zeros(size(OC)); 
        for k = 1:numel(OC) 
            N(k) = numel(find(GI == OC(k))); 
        end 
        P = exp(gamma*N); 
        P = P/sum(P); 
        sci = RouletteWheelSelection(P); 
        sc = OC(sci); 
        SCM = find(GI == sc); 
        smi = randi([1 numel(SCM)]); 
        sm = SCM(smi); 
        rep(sm) = []; 
end 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/222202
推荐阅读
相关标签
  

闽ICP备14008679号