赞
踩
- class MultiHeadAttention(tf.keras.layers.Layer):
- def __init__(self, num_heads, d_model):
- super(MultiHeadAttention, self).__init__()
- self.num_heads = num_heads
- self.d_model = d_model
-
- assert d_model % self.num_heads == 0
-
- self.depth = d_model // self.num_heads
-
- self.wq = tf.keras.layers.Dense(d_model)
- self.wk = tf.keras.layers.Dense(d_model)
- self.wv = tf.keras.layers.Dense(d_model)
-
- self.dense = tf.keras.layers.Dense(d_model)
-
- def split_heads(self, x, batch_size):
- """Split the last dimension into (num_heads, depth).
- Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
- """
- x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
- return tf.transpose(x, perm=[0, 2, 1, 3])
-
- def scaled_dot_product_attention(self, q, k, v, mask):
- """Calculate the attention weights.
- q, k, v must have matching leading dimensions.
- k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
- The mask has different shapes depending on its type(padding or look ahead)
- but it must be broadcastable for addition.
- Args:
- q: query shape == (..., seq_len_q, depth)
- k: key shape == (..., seq_len_k, depth)
- v: value shape == (..., seq_len_v, depth_v)
- mask: Float tensor with shape broadcastable
- to (..., seq_len_q, seq_len_k). Defaults to None.
- Returns:
- output, attention_weights
- """
-
- matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
-
- # scale matmul_q
- # scale matmul_qk
- dk = tf.cast(tf.shape(k)[-1], tf.float32)
- scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
-
- # add the mask to the scaled tensor.
- if mask is not None:
- scaled_attention_logits += (mask * -1e9)
-
- # softmax is normalized on the last axis (seq_len_k) so that the scores
- # add up to 1.
- attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
-
- output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
-
- return output, attention_weights
-
- def call(self, v, k, q, mask):
- batch_size = tf.shape(q)[0]
-
- q = self.wq(q) # (batch_size, seq_len, d_model)
- k = self.wk(k) # (batch_size, seq_len, d_model)
- v = self.wv(v) # (batch_size, seq_len, d_
- # split heads
- q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
- k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
- v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
-
- # scaled dot product attention
- scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask)
-
- # concatenation of heads
- scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
- concat_attention = tf.reshape(scaled_attention,
- (batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
-
- # final linear layer
- output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
-
- return output
- # Stock price prediction model
- class StockPricePredictionModel(tf.keras.Model):
- def __init__(self, num_heads, d_model, num_lstm_units):
- super(StockPricePredictionModel, self).__init__()
- self.num_heads = num_heads
- self.f_model = d_model
- self.num_lstm_units = num_lstm_units
-
- self.multi_head_attention = MultiHeadAttention(self.num_heads, self.d_model)
- self.lstm = tf.keras.layers.LSTM(self.num_lstm_units, return_sequences=True)
- self.dense = tf.keras.layers.Dense(1)
-
- def call(self, inputs, mask):
- attention_output = self.multi_head_attention(inputs, input, input, mask)
- lstm_output = self.lstm(attention_output)
- prediction = self.dense(lstm_output)
- return prediction
-
- model = StockPricePredictionModel(num_heads=9, d_model=256, num_lstm_units=128)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。