当前位置:   article > 正文

PyTorch实现的ResNet50、ResNet101和ResNet152_resnet101输出特征尺寸

resnet101输出特征尺寸

PyTorch实现的ResNet50、ResNet101和ResNet152
PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks
在这里插入图片描述

import torch
import torch.nn as nn
import torchvision
import numpy as np

print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)

__all__ = ['ResNet50', 'ResNet101','ResNet152']

def Conv1(in_planes, places, stride=2):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
        nn.BatchNorm2d(places),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )

class Bottleneck(nn.Module):
    def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 4):
        super(Bottleneck,self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling

        self.bottleneck = nn.Sequential(
            nn.Conv2d(in_channels=in_places,out_channels=places,kernel_size=1,stride=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places*self.expansion, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places*self.expansion),
        )

        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(places*self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        residual = x
        out = self.bottleneck(x)

        if self.downsampling:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self,blocks, num_classes=1000, expansion = 4):
        super(ResNet,self).__init__()
        self.expansion = expansion

        self.conv1 = Conv1(in_planes = 3, places= 64)

        self.layer1 = self.make_layer(in_places = 64, places= 64, block=blocks[0], stride=1)
        self.layer2 = self.make_layer(in_places = 256,places=128, block=blocks[1], stride=2)
        self.layer3 = self.make_layer(in_places=512,places=256, block=blocks[2], stride=2)
        self.layer4 = self.make_layer(in_places=1024,places=512, block=blocks[3], stride=2)

        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(2048,num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def make_layer(self, in_places, places, block, stride):
        layers = []
        layers.append(Bottleneck(in_places, places,stride, downsampling =True))
        for i in range(1, block):
            layers.append(Bottleneck(places*self.expansion, places))

        return nn.Sequential(*layers)


    def forward(self, x):
        x = self.conv1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

def ResNet50():
    return ResNet([3, 4, 6, 3])

def ResNet101():
    return ResNet([3, 4, 23, 3])

def ResNet152():
    return ResNet([3, 8, 36, 3])


if __name__=='__main__':
    #model = torchvision.models.resnet50()
    model = ResNet50()
    print(model)

    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号