当前位置:   article > 正文

谷歌BERT预训练源码解析(三):训练过程_tf.contrib.cluster_resolver.tpuclusterresolver

tf.contrib.cluster_resolver.tpuclusterresolver

目录
前言
源码解析
主函数
自定义模型
遮蔽词预测
下一句预测
规范化数据集
前言
本部分介绍BERT训练过程,BERT模型训练过程是在自己的TPU上进行的,这部分我没做过研究所以不做深入探讨。BERT针对两个任务同时训练。1.下一句预测。2.遮蔽词识别
下面介绍BERT的预训练模型run_pretraining.py是怎么训练的。

源码解析
主函数
训练过程主要用了estimator调度器。这个调度器支持自定义训练过程,将训练集传入之后自动训练。详情见注释

def main(_):
tf.logging.set_verbosity(tf.logging.INFO)

if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")

bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

tf.gfile.MakeDirs(FLAGS.output_dir)

input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))

tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)

tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig( #训练参数
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))

model_fn = model_fn_builder( #自定义模型,用于estimator训练
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)

# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator( #创建TPUEstimator
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size)

if FLAGS.do_train: #训练过程
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder( #创建输入训练集
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)

if FLAGS.do_eval: #验证过程
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)

eval_input_fn = input_fn_builder( #创建验证集
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False)

result = estimator.evaluate(
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)

output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
自定义模型
首先获取数据内容,传入到上一篇定义的模型中。对下一句预测任务取出模型的[CLS]结果。对遮蔽词预测任务取出模型的最后结果。然后分别计算loss值,最后将loss值相加。详情见注释

def model_fn_builder(bert_config, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""

def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""

tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
#获取数据内容
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
next_sentence_labels = features["next_sentence_labels"]

is_training = (mode == tf.estimator.ModeKeys.TRAIN)
传入到Bert模型中。
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
#遮蔽预测的batch_loss,平均loss,预测概率矩阵
(masked_lm_loss,
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
bert_config, model.get_sequence_output(), model.get_embedding_table(),
masked_lm_positions, masked_lm_ids, masked_lm_weights)
#下一句预测的batch_loss,平均loss,预测概率矩阵
(next_sentence_loss, next_sentence_example_loss,
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels)
#loss相加
total_loss = masked_lm_loss + next_sentence_loss
#获取所有变量
tvars = tf.trainable_variables()

initialized_variable_names = {}
scaffold_fn = None
#如果有之前保存的模型
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:

def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()

scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

tf.logging.info("**** Trainable Variables ****")
#如果有之前保存的模型
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)

output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer( #自定义好的优化器
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

output_spec = tf.contrib.tpu.TPUEstimatorSpec( #Estimator要求返回一个EstimatorSpec对象
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
#验证过程
elif mode == tf.estimator.ModeKeys.EVAL:

def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels):
"""Computes the loss and accuracy of the model."""
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
[-1, masked_lm_log_probs.shape[-1]]) #概率矩阵转成[batch_size*max_pred_pre_seq,vocab_size]
masked_lm_predictions = tf.argmax(
masked_lm_log_probs, axis=-1, output_type=tf.int32) #取最大值位置为输出
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) #每句loss列表 [batch_size*max_pred_per_seq]
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy( #计算准确率
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean( #计算平均loss
values=masked_lm_example_loss, weights=masked_lm_weights)

next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax( #获取最大位置为输出
next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy( #计算准确率
labels=next_sentence_labels, predictions=next_sentence_predictions)
next_sentence_mean_loss = tf.metrics.mean( 计算平均loss
values=next_sentence_example_loss)

return {
"masked_lm_accuracy": masked_lm_accuracy,
"masked_lm_loss": masked_lm_mean_loss,
"next_sentence_accuracy": next_sentence_accuracy,
"next_sentence_loss": next_sentence_mean_loss,
}

eval_metrics = (metric_fn, [
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels
])
output_spec = tf.contrib.tpu.TPUEstimatorSpec( #Estimator要求返回一个EstimatorSpec对象
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

return output_spec

return model_fn
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
遮蔽词预测
输入BERT模型的最后一层encoder,输出遮蔽词预测任务的loss和概率矩阵。详情见注释

def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids, label_weights):
#这里的input_tensor是模型中传回的最后一层结果 [batch_size,seq_length,hidden_size]。
#output_weights是词向量表 [vocab_size,embedding_size]
"""Get loss and log probs for the masked LM."""
#获取positions位置的所有encoder(即要预测的那些位置的encoder)
input_tensor = gather_indexes(input_tensor, positions) #[batch_size*max_pred_pre_seq,hidden_size]

with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense( #传入一个全连接层 输出shape [batch_size*max_pred_pre_seq,hidden_size]
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)

# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True) #[batch_size*max_pred_pre_seq,vocab_size]
logits = tf.nn.bias_add(logits, output_bias) #加bias
log_probs = tf.nn.log_softmax(logits, axis=-1) #[batch_size*max_pred_pre_seq,vocab_size]

label_ids = tf.reshape(label_ids, [-1]) #[batch_size*max_pred_per_seq]
label_weights = tf.reshape(label_weights, [-1])

one_hot_labels = tf.one_hot( #[batch_size*max_pred_per_seq,vocab_size]
label_ids, depth=bert_config.vocab_size, dtype=tf.float32) #label id转one hot

# The `positions` tensor might be zero-padded (if the sequence is too
# short to have the maximum number of predictions). The `label_weights`
# tensor has a value of 1.0 for every real prediction and 0.0 for the
# padding predictions.
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1]) #[batch_size*max_pred_per_seq]
numerator = tf.reduce_sum(label_weights * per_example_loss) #[1] 一个batch的loss
denominator = tf.reduce_sum(label_weights) + 1e-5
loss = numerator / denominator #平均loss

return (loss, per_example_loss, log_probs)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
下一句预测
输入BERT模型CLS的encoder,输出下一句预测任务的loss和概率矩阵,详情见注释

def get_next_sentence_output(bert_config, input_tensor, labels):
#input_tensor shape [batch_size,hidden_size]
"""Get loss and log probs for the next sentence prediction."""

# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer()) #[batch_size,hidden_size]

logits = tf.matmul(input_tensor, output_weights, transpose_b=True) #[batch_size,2]
logits = tf.nn.bias_add(logits, output_bias) #[batch_size,2]
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) #[batch_size,2]
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) #[batch_size]
loss = tf.reduce_mean(per_example_loss) #[1]
return (loss, per_example_loss, log_probs)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
规范化数据集
Estimator要求模型的输入为特定格式(from_tensor_slices),所以要对数据进行类封装

def input_fn_builder(input_files,
max_seq_length,
max_predictions_per_seq,
is_training,
num_cpu_threads=4):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""

def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]

name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}

# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat() #重复
d = d.shuffle(buffer_size=len(input_files)) #打乱

# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))

# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.contrib.data.parallel_interleave( #生成嵌套数据集,并且输出其元素隔行交错
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
else:
d = tf.data.TFRecordDataset(input_files)
# Since we evaluate for a fixed number of steps we don't want to encounter
# out-of-range exceptions.
d = d.repeat()

# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
# and we *don't* want to drop the remainder, otherwise we wont cover
# every sample.
d = d.apply(
tf.contrib.data.map_and_batch( #结构转换
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
return d

return input_fn
---------------------
作者:保持一份率性
来源:CSDN
原文:https://blog.csdn.net/weixin_39470744/article/details/84619903
版权声明:本文为博主原创文章,转载请附上博文链接!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/312334
推荐阅读
相关标签
  

闽ICP备14008679号