赞
踩
本实验介绍了使用Python进行机器学习的一些基本概念。 在本案例中,将使用K-Nearest Neighbor(KNN)算法对鸢尾花的种类进行分类,并测量花的特征。
本案例目的:
Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:
sklearn.datasets
加载获取流行数据集
datasets.load_*()
datasets.fetch_*(data_home=None)
加载并返回鸢尾花数据集
sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)
subset:'train'或者'test','all',可选,选择要加载的数据集。
load和fetch返回的数据类型datasets.base.Bunch(字典格式)
data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
from sklearn.datasets import load_iris # 获取鸢尾花数据集 iris = load_iris() print("鸢尾花数据集的返回值:\n", iris) # 返回值是一个继承自字典的Bench print("鸢尾花的特征值:\n", iris["data"]) print("鸢尾花的目标值:\n", iris.target) print("鸢尾花特征的名字:\n", iris.feature_names) print("鸢尾花目标值的名字:\n", iris.target_names) print("鸢尾花的描述:\n", iris.DESCR)
通过创建一些图,以查看不同类别是如何通过特征来区分的。 在理想情况下,标签类将由一个或多个特征对完美分隔。 在现实世界中,这种理想情况很少会发生。
seaborn介绍
Seaborn 是基于 Matplotlib 核心库进行了更高级的 API 封装,可以让你轻松地画出更漂亮的图形。而 Seaborn 的漂亮主要体现在配色更加舒服、以及图形元素的样式更加细腻。
seaborn.lmplot() 是一个非常有用的方法,它会在绘制二维散点图时,自动完成回归拟合
[参考链接: api链接](
%matplotlib inline # 内嵌绘图 import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # 把数据转换成dataframe的格式 iris_d = pd.DataFrame(iris['data'], columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']) iris_d['Species'] = iris.target def plot_iris(iris, col1, col2): sns.lmplot(x = col1, y = col2, data = iris, hue = "Species", fit_reg = False) plt.xlabel(col1) plt.ylabel(col2) plt.title('鸢尾花种类分布图') plt.show() plot_iris(iris_d, 'Petal_Width', 'Sepal_Length')
机器学习一般的数据集会划分为两个部分:
划分比例:
数据集划分api
sklearn.model_selection.train_test_split(arrays, *options)
x 数据集的特征值
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 1、获取鸢尾花数据集 iris = load_iris() # 对鸢尾花数据集进行分割 # 训练集的特征值x_train 测试集的特征值x_test 训练集的目标值y_train 测试集的目标值y_test x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22) print("x_train:\n", x_train.shape) # 随机数种子 x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6) x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6) print("如果随机数种子不一致:\n", x_train == x_train1) print("如果随机数种子一致:\n", x_train1 == x_train2)
provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators.
翻译过来:通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程
我们需要用到一些方法进行无量纲化,使不同规格的数据转换到同一规格
sklearn.preprocessing
通过对原始数据进行变换把数据映射到(默认为[0,1])之间
作用于每一列,max为一列的最大值,min为一列的最小值,那么X’’为最终结果,mx,mi分别为指定区间值默认mx为1,mi为0
那么怎么理解这个过程呢?我们通过一个例子
sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )
MinMaxScalar.fit_transform(X)
返回值:转换后的形状相同的array
我们对以下数据进行运算,在dating.txt中。保存的就是之前的约会对象数据
milage,Liters,Consumtime,target
40920,8.326976,0.953952,3
14488,7.153469,1.673904,2
26052,1.441871,0.805124,1
75136,13.147394,0.428964,1
38344,1.669788,0.134296,1
1、实例化MinMaxScalar
2、通过fit_transform转换
import pandas as pd from sklearn.preprocessing import MinMaxScaler def minmax_demo(): """ 归一化演示 :return: None """ data = pd.read_csv("dating.txt") print(data) # 1、实例化一个转换器类 transfer = MinMaxScaler(feature_range=(2, 3)) # 2、调用fit_transform data = transfer.fit_transform(data[['milage','Liters','Consumtime']]) print("最小值最大值归一化处理的结果:\n", data) return None
返回结果:
milage Liters Consumtime target 0 40920 8.326976 0.953952 3 1 14488 7.153469 1.673904 2 2 26052 1.441871 0.805124 1 3 75136 13.147394 0.428964 1 .. ... ... ... ... 998 48111 9.134528 0.728045 3 999 43757 7.882601 1.332446 3 [1000 rows x 4 columns] 最小值最大值归一化处理的结果: [[ 2.44832535 2.39805139 2.56233353] [ 2.15873259 2.34195467 2.98724416] [ 2.28542943 2.06892523 2.47449629] ..., [ 2.29115949 2.50910294 2.51079493] [ 2.52711097 2.43665451 2.4290048 ] [ 2.47940793 2.3768091 2.78571804]]
注意最大值最小值是变化的,另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景。
怎么办?
通过对原始数据进行变换把数据变换到均值为0,标准差为1范围内
作用于每一列,mean为平均值,σ为标准差
所以回到刚才异常点的地方,我们再来看看标准化
sklearn.preprocessing.StandardScaler( )
处理之后每列来说所有数据都聚集在均值0附近标准差差为1
StandardScaler.fit_transform(X)
返回值:转换后的形状相同的array
同样对上面的数据进行处理
1、实例化StandardScaler
2、通过fit_transform转换
import pandas as pd from sklearn.preprocessing import StandardScaler def stand_demo(): """ 标准化演示 :return: None """ data = pd.read_csv("dating.txt") print(data) # 1、实例化一个转换器类 transfer = StandardScaler() # 2、调用fit_transform data = transfer.fit_transform(data[['milage','Liters','Consumtime']]) print("标准化的结果:\n", data) print("每一列特征的平均值:\n", transfer.mean_) print("每一列特征的方差:\n", transfer.var_) return None
返回结果:
milage Liters Consumtime target 0 40920 8.326976 0.953952 3 1 14488 7.153469 1.673904 2 2 26052 1.441871 0.805124 1 .. ... ... ... ... 997 26575 10.650102 0.866627 3 998 48111 9.134528 0.728045 3 999 43757 7.882601 1.332446 3 [1000 rows x 4 columns] 标准化的结果: [[ 0.33193158 0.41660188 0.24523407] [-0.87247784 0.13992897 1.69385734] [-0.34554872 -1.20667094 -0.05422437] ..., [-0.32171752 0.96431572 0.06952649] [ 0.65959911 0.60699509 -0.20931587] [ 0.46120328 0.31183342 1.00680598]] 每一列特征的平均值: [ 3.36354210e+04 6.55996083e+00 8.32072997e-01] 每一列特征的方差: [ 4.81628039e+08 1.79902874e+01 2.46999554e-01]
在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。