当前位置:   article > 正文

NLP09-Gensim源码简析[TfidfModel]_gensim tfidfmodel

gensim tfidfmodel

这里写图片描述

摘要:通读TfidfModel模型的源码,理清模型的原理:是一个语料另一种表示;是一种语料的词权重表示,是词的一种加重技术;是一套自定义的计算模型方法;直观的核心思想是:字词的重要性与文档中出现的频数成正比,与语料库中出现的频数成反比。Gensim实现中关键代码体现在两个地方,一个是构造函数,另一个在 getitem函数上。构函数主要一个语料的训练,在内存保存相关模型,getitem函数是一个具体应用的TFIDFModel应用。
相关术语:
词频 (term frequency, TF):指的是某一个给定的词语在该文件中出现的频率;
逆向文件频率 (inverse document frequency, IDF) :是一个词语普遍重要性的度量;

1.0 引入例子

from gensim import corpora
from gensim import models

def get_corpus_dictionary():
    documents = ["Human machine interface for lab abc computer applications",
                 "A survey of user opinion of computer system response time",
                 "The EPS user interface management system",
                 "System and human system engineering testing of EPS",
                 "Relation of user perceived response time to error measurement",
                 "The generation of random binary unordered trees",
                 "The intersection graph of paths in trees",
                 "Graph minors IV Widths of trees and well quasi ordering",
                 "Graph minors A survey"]
    stoplist = set('for a of the and to in'.split())
    texts = [[word for word in document.lower().split() if word not in stoplist]
             for document in documents]

    from collections import defaultdict
    frequency = defaultdict(int)
    for text in texts:
        for token in text:
            frequency[token] += 1

    texts = [[token for token in text if frequency[token] > 1]
             for text in texts]
    dictionary = corpora.Dictionary(texts)
    corpus = [dictionary.doc2bow(text) for text in texts]
    print('原文本:')
    for text in texts:
        print(text)
    return corpus, dictionary
corpus,dictionary = get_corpus_dictionary()
print('=================dictinary=============')
print('词ID到这个词在多少篇文档数的映射(dfs):',dictionary.dfs)
print('词到id编码的映射(token2id):',dictionary.token2id)
print('id编码到词的映射(id2token):',dictionary.id2token)
print('处理的文档数(num_docs):',dictionary.num_docs)
print('没有去重词条总数(num_pos):',dictionary.num_pos)
print('对文档内去重后的词条总数,文档间相同词不去重,只要记录BOW矩阵的非零元素个数(num_nnz):',dictionary.num_nnz)
print('=================dictinary=============')
print('原词袋表示:')
for c in corpus:
    print(c)
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
print('转换整个语料库:')
for doc in corpus_tfidf:
    print(doc)

运行结果:
原文本:
['human', 'interface', 'computer']
['survey', 'user', 'computer', 'system', 'response', 'time']
['eps', 'user', 'interface', 'system']
['system', 'human', 'system', 'eps']
['user', 'response', 'time']
['trees']
['graph', 'trees']
['graph', 'minors', 'trees']
['graph', 'minors', 'survey']
=================dictinary=============
词ID到这个词在多少篇文档数的映射(dfs): {0: 2, 1: 2, 2: 2, 3: 2, 4: 3, 5: 2, 6: 2, 7: 3, 8: 2, 9: 3, 10: 3, 11: 2}
词到id编码的映射(token2id): {'minors': 11, 'computer': 0, 'user': 4, 'trees': 9, 'response': 6, 'time': 5, 'graph': 10, 'human': 1, 'interface': 2, 'survey': 3, 'eps': 8, 'system': 7}
id编码到词的映射(id2token): {}
处理的文档数(num_docs): 9
没有去重词条总数(num_pos): 29
对文档内去重后的词条总数,文档间相同词不去重,只要记录BOW矩阵的非零元素个数(num_nnz): 28
=================dictinary=============
原词袋表示:
[(0, 1), (1, 1), (2, 1)]
[(0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)]
[(2, 1), (4, 1), (7, 1), (8, 1)]
[(1, 1), (7, 2), (8, 1)]
[(4, 1), (5, 1), (6, 1)]
[(9, 1)]
[(9, 1), (10, 1)]
[(9, 1), (10, 1), (11, 1)]
[(3, 1), (10, 1), (11, 1)]
转换整个语料库:
[(0, 0.5773502691896257), (1, 0.5773502691896257), (2, 0.5773502691896257)]
[(0, 0.44424552527467476), (3, 0.44424552527467476), (4, 0.3244870206138555), (5, 0.44424552527467476), (6, 0.44424552527467476), (7, 0.3244870206138555)]
[(2, 0.5710059809418182), (4, 0.4170757362022777), (7, 0.4170757362022777), (8, 0.5710059809418182)]
[(1, 0.49182558987264147), (7, 0.7184811607083769), (8, 0.49182558987264147)]
[(4, 0.45889394536615247), (5, 0.6282580468670046), (6, 0.6282580468670046)]
[(9, 1.0)]
[(9, 0.7071067811865475), (10, 0.7071067811865475)]
[(9, 0.5080429008916749), (10, 0.5080429008916749), (11, 0.695546419520037)]
[(3, 0.6282580468670046), (10, 0.45889394536615247), (11, 0.6282580468670046)]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
1.1 TfidfModel构造方法
1.1.1 构造函数参数说明
 def __init__(self, corpus=None, id2word=None, dictionary=None,
             wlocal=utils.identity, wglobal=df2idf, normalize=True)
 #corpus: 语料
 #id2word: id转向词函数
 #dictionary:词典
 #wlocal: 用在计算
 #      vector = [(termid, self.wlocal(tf) 
 # self.idfs.get(termid))
 #         for termid, tf in bow if self.idfs.get(termid, 0.0) != 0.0] 
# wglobal: 用要计算地方
#              dict((termid, wglobal(df, total_docs))
#            for termid, df in iteritems(dfs))
# normalize: 规范化处理;这个可以是一个布尔类型的值,也可以是自定义的函数;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

wlocal与wglobal可自定义计算tfidf函数;默认为wlocal=utils.identity{默认是,这个个函数不作任何处理的},wglobal=df2idf {
idf = add + log(totaldocs / doc_freq)
}

1.1.2 wglobal默认函数
def df2idf(docfreq, totaldocs, log_base=2.0, add=0.0):
    """使用文档频率去计算,逆文档频率"""
    return add + math.log(1.0 * totaldocs / docfreq, log_base)
#TF-IDF主要实现的公式
#weight_{i,j} = wlocal(frequency_{i,j}) * #wglobal(document_freq_{i}, D)
  • 1
  • 2
  • 3
  • 4
  • 5
1.1.3 构造函数核心源码
# TfidfModel可由字典创建或corpus创建。两个都给了定了,就按字典创建。
if dictionary is not None:
    if corpus is not None:
    self.num_docs, self.num_nnz = dictionary.num_docs, dictionary.num_nnz
    self.dfs = dictionary.dfs.copy()
    self.idfs = precompute_idfs(self.wglobal, self.dfs, self.num_docs)
    if id2word is None:
        self.id2word = dictionary
elif corpus is not None:
    self.initialize(corpus)
else:
    pass
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

补充字典参数:
token2id:词到id编码的映射;
id2token:id编码到词的映射;
dfs:词ID到这个词在多少篇文档数的映射;

self.num_docs:处理的文档数
self.num_pos: 没有去重词条总数[因为一个文档会有相同出现的词]
self.num_nnz: 对文档内去重后的词条总数,文档间相同词不去重,只要记录BOW矩阵的非零元素个数

1.1.4 precompute_idfs函数

无论是给了语料或字典,一般来说如果前面有计算出字典的,最好给字典,因为给了语料还要计算字典相关的数据,这个initialize()函数中可以看到。不过,最后还是调用了precompute_idfs(),它会预计算idfs,为后提供数据支持,为后面计算加快计算数据用的:返回词id与该转换后的tf-idf值对应关系,即由原来的整型BOW词袋转成了tf-idf模型的词袋:

def precompute_idfs(wglobal, dfs, total_docs):
    # 遍历每个词与词所在的文档数数据对,对每个词,根据文档数据调用wglobal公式,默认时是调用df2idf()函数来求。
    return dict((termid, wglobal(df, total_docs)) for termid, df in iteritems(dfs))
  • 1
  • 2
  • 3

1.2 语料权重调用计算

如上面例子,调用方法为:

corpus_tfidf = tfidf[corpus]
  • 1

代码实现为:

def __getitem__(self, bow, eps=1e-12):
    # 判断转入的是否是合法的语料
    is_corpus, bow = utils.is_corpus(bow)
    if is_corpus:
        return self._apply(bow)
    # 对每个语料计算权重,去掉权重为0结果
    vector = [
        (termid, self.wlocal(tf) * self.idfs.get(termid))
        for termid, tf in bow if self.idfs.get(termid, 0.0) != 0.0
    ]
    # 标准化,normalize可是一个布尔值,同时也可以是一个函数。
    if self.normalize is True:
        vector = matutils.unitvec(vector)
    elif self.normalize:
        vector = self.normalize(vector)
   # 确保权重大于一个eps域值,这个可以用来作关键词提取的过滤
    vector = [(termid, weight) for termid, weight in vector if abs(weight) > eps]
    return vector
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

题外话:python中实例tfidf[corpus]就类似上面的的操作,则会自动调用类中定义的方法getitem;这个是python里面特殊函数,语法层面的内容;另外len, setitem, delitem等函数也有类似的特殊操作。

了解更多TF-IDF算法:
http://www.cnblogs.com/biyeymyhjob/archive/2012/07/17/2595249.html

【作者:happyprince, http://blog.csdn.net/ld326/article/details/78441773

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/357833
推荐阅读
相关标签
  

闽ICP备14008679号