当前位置:   article > 正文

chatglm3-6b部署及微调_chatglm3微调

chatglm3微调

chatglm3-6b部署及微调

插播:如果你想私有化部署商业版gpt
演示地址:https://chat.apeto.cn
项目介绍点我直达

  • modelscope: https://modelscope.cn/models/ZhipuAI/chatglm3-6b/files
  • github: https://github.com/THUDM/ChatGLM3
  • 镜像: ubuntu20.04-cuda11.7.1-py38-torch2.0.1-tf1.15.5-1.8.1
  • v100 16G现存 单卡

安装

软件依赖

# 非必要无需执行
# pip install --upgrade pip

pip install modelscope>=1.9.0
  • 1
  • 2
  • 3
  • 4

下载及调用

from modelscope import AutoTokenizer, AutoModel, snapshot_download
model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.2")
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda()
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
print(response)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

在这里插入图片描述

微调

数据集: https://modelscope.cn/datasets/damo/MSAgent-Bench/summary
项目: https://github.com/modelscope/swift

项目下载

mkdir py
git clone https://github.com/modelscope/swift.git
cd swift
  • 1
  • 2
  • 3

安装依赖:

# 已安装忽略
pip install ms-swift

# 已安装忽略
pip install modelscope>=1.9.0

# 设置pip全局镜像和安装相关的python包
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
git clone https://github.com/modelscope/swift.git
cd swift
pip install .[llm]
# 下面的脚本需要在此目录下执行
cd examples/pytorch/llm


# 如果你想要使用deepspeed
pip install deepspeed -U


# 如果你想要使用基于auto_gptq的qlora训练. (推荐, 效果优于bnb)
# 使用auto_gptq的模型: qwen-7b-chat-int4, qwen-14b-chat-int4, qwen-7b-chat-int8, qwen-14b-chat-int8
pip install auto_gptq optimum -U


# 如果你想要使用基于bnb的qlora训练.
pip install bitsandbytes -U
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

脚本sft.sh

sft.sh
将脚本放在swift/examples/pytorch/llm/scripts/chatglm3_6b/lora_ddp_ds这个目录下

  • 单显卡: CUDA_VISIBLE_DEVICES=0
  • 模型ID: model_id_or_path ZhipuAI/chatglm3-6b
  • 模型版本: model_revision v1.0.2
  • dtype: 如果是老显卡比如V100 是不支持bf16的 需要指定为: fp16
  • 模板类型: template_type chatglm3
  • 数据集: dataset damo-agent-mini-zh 这里采用达摩院的agent
  • lora_rank和lora_alpha 注意: lora_alpha一定要是lora_rank 2倍质量最高
  • hub_token: 你的modelscope平台的token该参数只有在push_to_hub设置为True时才生效.
  • gradient_accumulation_steps 根据显卡性能调整 v100 我这里用的16 高级显卡可以设置32
  • max_length 根据显卡性能调整 v100我这里用的是2048 高级显卡可以调整成4096
  • 剩余其他参数默认即可
# v100 16G 单卡
nproc_per_node=1

PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
torchrun \
    --nproc_per_node=$nproc_per_node \
    --master_port 29500 \
    llm_sft.py \
    --model_id_or_path ZhipuAI/chatglm3-6b \
    --model_revision v1.0.2 \
    --sft_type lora \
    --tuner_backend swift \
    --template_type chatglm3 \
    --dtype fp16 \
    --output_dir output \
    --dataset damo-agent-mini-zh \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 2048 \
    --lora_rank 8 \
    --lora_alpha 16 \
    --lora_dropout_p 0.05 \
    --lora_target_modules AUTO \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0. \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps 16 \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --push_to_hub false \
    --hub_model_id chatglm3-6b-lora \
    --hub_private_repo true \
    --hub_token 'token' \
    --deepspeed_config_path 'ds_config/zero2.json' \
    --only_save_model true \

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

运行脚本

注意: 要在 swift/examples/pytorch/llm 这个目录下进行 记得给脚本权限chmod +x llm/*.py

./scripts/chatglm3_6b/lora_ddp_ds/sft.sh
  • 1

推理

infer.sh
将脚本放在swift/examples/pytorch/llm/scripts/chatglm3_6b/lora_ddp_ds这个目录下

# Experimental environment: v100
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0 \
python llm_infer.py \
    --model_id_or_path ZhipuAI/chatglm3-6b \
    --model_revision v1.0.2 \
    --sft_type lora \
    --template_type chatglm3 \
    --dtype fp16 \
    # --ckpt_dir "output/chatglm3-6b/vx_xxx/checkpoint-xxx" \
    --eval_human false \
    --dataset damo-agent-mini-zh \
    --max_length 2048 \
    --max_new_tokens 2048 \
    --temperature 0.9 \
    --top_k 20 \
    --top_p 0.9 \
    --do_sample true \
    --merge_lora_and_save false \
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

常见问题

1.显卡驱动

RuntimeError: The NVIDIA driver on your system is too old (found version 11080). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver.
  • 1
解决方案

错误提示显卡驱动较老 其实可能是torch版本太高导致的问题 我们用的是2.0.1 请检查你的版本是否是2.0.1
https://pytorch.org/get-started/previous-versions/

# 查看torch版本
python
import torch
print(torch.__version__)

# 查看CUDA版本
nvidia-smi

# 卸载过高的版本
pip uninstall torch

# 访问官方查看对应版本: https://pytorch.org/get-started/previous-versions/  以cuda 11.8 pytorch:2.0.1 举例  
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/363605
推荐阅读
相关标签
  

闽ICP备14008679号