当前位置:   article > 正文

torch.nn.utils.clip_grad_norm()函数源码_from torch._six import inf

from torch._six import inf
  • 函数作用
    参考链接
    在这里插入图片描述
    作用:梯度剪切,规定了最大不能超过的max_norm.
  • 源码示例
import warnings
import torch
from torch._six import inf


def clip_grad_norm_(parameters, max_norm, norm_type=2):
    r"""Clips gradient norm of an iterable of parameters.

    The norm is computed over all gradients together, as if they were
    concatenated into a single vector. Gradients are modified in-place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    if norm_type == inf:
        total_norm = max(p.grad.data.abs().max() for p in parameters)
    else:
        total_norm = 0
        for p in parameters:
            param_norm = p.grad.data.norm(norm_type)
            total_norm += param_norm.item() ** norm_type
        total_norm = total_norm ** (1. / norm_type)
    clip_coef = max_norm / (total_norm + 1e-6)
    if clip_coef < 1:
        for p in parameters:
            p.grad.data.mul_(clip_coef)
    return total_norm


def clip_grad_norm(parameters, max_norm, norm_type=2):
    r"""Clips gradient norm of an iterable of parameters.

    .. warning::
        This method is now deprecated in favor of
        :func:`torch.nn.utils.clip_grad_norm_`.
    """
    warnings.warn("torch.nn.utils.clip_grad_norm is now deprecated in favor "
                  "of torch.nn.utils.clip_grad_norm_.", stacklevel=2)
    return clip_grad_norm_(parameters, max_norm, norm_type)```

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/375415
推荐阅读
相关标签
  

闽ICP备14008679号