赞
踩
import warnings import torch from torch._six import inf def clip_grad_norm_(parameters, max_norm, norm_type=2): r"""Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Arguments: parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. Returns: Total norm of the parameters (viewed as a single vector). """ if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) max_norm = float(max_norm) norm_type = float(norm_type) if norm_type == inf: total_norm = max(p.grad.data.abs().max() for p in parameters) else: total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type total_norm = total_norm ** (1. / norm_type) clip_coef = max_norm / (total_norm + 1e-6) if clip_coef < 1: for p in parameters: p.grad.data.mul_(clip_coef) return total_norm def clip_grad_norm(parameters, max_norm, norm_type=2): r"""Clips gradient norm of an iterable of parameters. .. warning:: This method is now deprecated in favor of :func:`torch.nn.utils.clip_grad_norm_`. """ warnings.warn("torch.nn.utils.clip_grad_norm is now deprecated in favor " "of torch.nn.utils.clip_grad_norm_.", stacklevel=2) return clip_grad_norm_(parameters, max_norm, norm_type)```
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。