当前位置:   article > 正文

基于Spark的电商用户行为实时分析可视化系统(Flask-SocketIO)_基于spark的电商用户行为实时分析可视化系统(flask-socketio)

基于spark的电商用户行为实时分析可视化系统(flask-socketio)

基于Spark的电商用户行为实时分析可视化系统(Flask-SocketIO)

 

项目简介

由于做毕设之前学过大数据,但是一直没有做过一整套的实时数据分析系统,有点遗憾。所以毕业设计就自主选了这一套系统,算是对之前知识进行一次整合运行,也挑战一下自己。
该系统主要对用户行为日志(此项目使用的数据源是数据集,可以根据自己需求,在数据采集时监控网站用户数据存放目录或者用爬虫实时爬取数据的存放目录)进行实时分析可视化。

先放最终系统成果,才有耐心看下面的内容!!!
系统登录页
系统页面

一、业务需求分析

  1. 采集用户行为日志数据;
  2. 实时分析数据(例如实时总订单、男女购物比例、用户各类行为分析、每段时间内最受欢迎的商品品牌、各年龄段购物比例等);
  3. 实时数据结果存储(将需要的结果数据存储到目标数据库);
  4. 数据可视化(将实时分析出的结果数据进行数据可视化);

二、系统流程及架构

登录系统后,通过日志采集模块来采集目标日志数据,将采集到的数据发送给日志传输模块,数据存放于kafka对应的topic中;数据处理模块创建与kafka的连接,消费对应topic中的数据,对数据进行预处理之后再进行处理分析,处理所得的结果数据存放进对应各topic中,以便于数据可视化,同时也将结果数据存入Redis数据库,便于后期其他功能分析使用。最后通过可视化模块,后台使用Flask作为Web框架,前端使用H5+Echarts,将结果数据进行可视化。系统流程图如图所示:
系统流程图
系统相关技术和组件:
Hadoop、Spark、Flume、Kafka、Zookeeper、Flask、SocketIO、Echarts、Scala、Python。项目架构如图所示:
项目架构图

三、系统技术版本以及相关部署配置

此项目由于计算机硬件配置较低,所以采用Hadoop伪分布式集群(部署在虚拟机的linux系统上用于存放源数据和程序检查点)和单机Spark集群(部署在本地windows上)
1.Hadoop2.9.2
伪分布式搭建参考(此项目) https://blog.csdn.net/xujingran/article/details/83898140
全分布式搭建参考 https://blog.csdn.net/u011254180/article/details/77922331
2.Flume1.9.0
搭建参考 https://blog.csdn.net/caodaoxi/article/details/8885645
Flume作为kafka的sink的配置文件:
在这里插入图片描述
3.Kafka2.4.0
伪分布式搭建参考(此) https://blog.csdn.net/weixin_42207486/article/details/80635246
全分布式搭建参考 https://blog.csdn.net/qq_39211575/article/details/103677016
5.Spark2.4.4
Windows单机搭建参考(此) https://blog.csdn.net/Python_Big_love/article/details/81878142
6.Zookeeper3.5.6
伪分布式搭建参考(此项目)https://blog.csdn.net/MISSRIVEN/article/details/81394595
全分布式搭建参考 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/376715
推荐阅读
相关标签
  

闽ICP备14008679号