当前位置:   article > 正文

Flink 本地安装 & 构建Flink应用_flink 1.15 pom

flink 1.15 pom

环境要求

Maven 3.0.4 (or higher)
Java 11

Flink 本地模式安装

下载

进入flink下载页面
https://flink.apache.org/zh/downloads.html

笔者选择的版本是1.15.1

若不想打开页面,可以直接使用下载链接
https://dlcdn.apache.org/flink/flink-1.15.1/flink-1.15.1-bin-scala_2.12.tgz

文件大小 435.6MB 需要等待一段时间…

选择 Apache Flink 1.15.1 for Scala 2.12 下载
在这里插入图片描述
在这里插入图片描述
注:这篇文章写时最新版本是 Apache Flink 1.15.1

解压与启动

解压
$ tar -xzf flink-1.15.1-bin-scala_2.12.tgz
$ cd flink-1.15.1
启动
$ ./bin/start-cluster.sh

Starting cluster.
Starting standalonesession daemon on host.
Starting taskexecutor daemon on host.

查看 flink 运行状态
http://localhost:8081/

能看到管理界面说明启动成功了
在这里插入图片描述

退出

$ ./bin/stop-cluster.sh

构建 Java 应用

运行以下程序时,Flink需是运行状态

直接使用指令创建maven项目(推荐)
mvn archetype:generate
-DarchetypeGroupId=org.apache.flink
-DarchetypeArtifactId=flink-quickstart-java
-DarchetypeVersion=1.15.0
-DgroupId=flink-project
-DartifactId=flink-project
-Dversion=0.1
-Dpackage=myflink
-DinteractiveMode=false

得到 flink-project/

完整pom.xml

如下

<!--
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements.  See the NOTICE file
distributed with this work for additional information
regarding copyright ownership.  The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License.  You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied.  See the License for the
specific language governing permissions and limitations
under the License.
-->
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>

	<groupId>flink-project</groupId>
	<artifactId>flink-project</artifactId>
	<version>0.1</version>
	<packaging>jar</packaging>

	<name>Flink Quickstart Job</name>

	<properties>
		<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
		<flink.version>1.15.0</flink.version>
		<target.java.version>1.8</target.java.version>
		<scala.binary.version>2.12</scala.binary.version>
		<maven.compiler.source>${target.java.version}</maven.compiler.source>
		<maven.compiler.target>${target.java.version}</maven.compiler.target>
		<log4j.version>2.17.1</log4j.version>
	</properties>

	<repositories>
		<repository>
			<id>apache.snapshots</id>
			<name>Apache Development Snapshot Repository</name>
			<url>https://repository.apache.org/content/repositories/snapshots/</url>
			<releases>
				<enabled>false</enabled>
			</releases>
			<snapshots>
				<enabled>true</enabled>
			</snapshots>
		</repository>
	</repositories>

	<dependencies>
		<!-- Apache Flink dependencies -->
		<!-- These dependencies are provided, because they should not be packaged into the JAR file. -->
		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-streaming-java</artifactId>
			<version>${flink.version}</version>
			<scope>provided</scope>
		</dependency>
		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-clients</artifactId>
			<version>${flink.version}</version>
			<scope>provided</scope>
		</dependency>

		<!-- Add connector dependencies here. They must be in the default scope (compile). -->

		<!-- Example:

		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-connector-kafka</artifactId>
			<version>${flink.version}</version>
		</dependency>
		-->

		<!-- Add logging framework, to produce console output when running in the IDE. -->
		<!-- These dependencies are excluded from the application JAR by default. -->
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-slf4j-impl</artifactId>
			<version>${log4j.version}</version>
			<scope>runtime</scope>
		</dependency>
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-api</artifactId>
			<version>${log4j.version}</version>
			<scope>runtime</scope>
		</dependency>
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-core</artifactId>
			<version>${log4j.version}</version>
			<scope>runtime</scope>
		</dependency>
	</dependencies>

	<build>
		<plugins>

			<!-- Java Compiler -->
			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-compiler-plugin</artifactId>
				<version>3.1</version>
				<configuration>
					<source>${target.java.version}</source>
					<target>${target.java.version}</target>
				</configuration>
			</plugin>

			<!-- We use the maven-shade plugin to create a fat jar that contains all necessary dependencies. -->
			<!-- Change the value of <mainClass>...</mainClass> if your program entry point changes. -->
			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-shade-plugin</artifactId>
				<version>3.1.1</version>
				<executions>
					<!-- Run shade goal on package phase -->
					<execution>
						<phase>package</phase>
						<goals>
							<goal>shade</goal>
						</goals>
						<configuration>
							<artifactSet>
								<excludes>
									<exclude>org.apache.flink:flink-shaded-force-shading</exclude>
									<exclude>com.google.code.findbugs:jsr305</exclude>
									<exclude>org.slf4j:*</exclude>
									<exclude>org.apache.logging.log4j:*</exclude>
								</excludes>
							</artifactSet>
							<filters>
								<filter>
									<!-- Do not copy the signatures in the META-INF folder.
									Otherwise, this might cause SecurityExceptions when using the JAR. -->
									<artifact>*:*</artifact>
									<excludes>
										<exclude>META-INF/*.SF</exclude>
										<exclude>META-INF/*.DSA</exclude>
										<exclude>META-INF/*.RSA</exclude>
									</excludes>
								</filter>
							</filters>
							<transformers>
								<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
								<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
									<mainClass>myflink.DataStreamJob</mainClass>
								</transformer>
							</transformers>
						</configuration>
					</execution>
				</executions>
			</plugin>
		</plugins>

		<pluginManagement>
			<plugins>

				<!-- This improves the out-of-the-box experience in Eclipse by resolving some warnings. -->
				<plugin>
					<groupId>org.eclipse.m2e</groupId>
					<artifactId>lifecycle-mapping</artifactId>
					<version>1.0.0</version>
					<configuration>
						<lifecycleMappingMetadata>
							<pluginExecutions>
								<pluginExecution>
									<pluginExecutionFilter>
										<groupId>org.apache.maven.plugins</groupId>
										<artifactId>maven-shade-plugin</artifactId>
										<versionRange>[3.1.1,)</versionRange>
										<goals>
											<goal>shade</goal>
										</goals>
									</pluginExecutionFilter>
									<action>
										<ignore/>
									</action>
								</pluginExecution>
								<pluginExecution>
									<pluginExecutionFilter>
										<groupId>org.apache.maven.plugins</groupId>
										<artifactId>maven-compiler-plugin</artifactId>
										<versionRange>[3.1,)</versionRange>
										<goals>
											<goal>testCompile</goal>
											<goal>compile</goal>
										</goals>
									</pluginExecutionFilter>
									<action>
										<ignore/>
									</action>
								</pluginExecution>
							</pluginExecutions>
						</lifecycleMappingMetadata>
					</configuration>
				</plugin>
			</plugins>
		</pluginManagement>
	</build>
</project>

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209

静态计算

添加 一个简单的单词计数程序
WordCount.class

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

/**
 * @author ximu
 * @date 2022/7/24
 * @description
 */
public class WordCount {
    //
    //	Program
    //

    public static void main(String[] args) throws Exception {

        // set up the execution environment
        final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        // get input data
        DataSet<String> text = env.fromElements(
                "To be, or not to be,--that is the question:--",
                "Whether 'tis nobler in the mind to suffer",
                "The slings and arrows of outrageous fortune",
                "Or to take arms against a sea of troubles,"
        );

        DataSet<Tuple2<String, Integer>> counts =
                // split up the lines in pairs (2-tuples) containing: (word,1)
                text.flatMap(new LineSplitter())
                        // group by the tuple field "0" and sum up tuple field "1"
                        .groupBy(0) //(i,1) (am,1) (chinese,1)
                        .sum(1);

        // execute and print result
        counts.print();
        
    }

    //
    // 	User Functions
    //

    /**
     * Implements the string tokenizer that splits sentences into words as a user-defined
     * FlatMapFunction. The function takes a line (String) and splits it into
     * multiple pairs in the form of "(word,1)" (Tuple2&lt;String, Integer&gt;).
     */
    public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {

        @Override
        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
            // normalize and split the line
            String[] tokens = value.toLowerCase().split("\\W+");

            // emit the pairs
            for (String token : tokens) {
                if (token.length() > 0) {
                    out.collect(new Tuple2<String, Integer>(token, 1));
                }
            }
        }
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67

运行得到结果
在这里插入图片描述
如果运行报错
错误: 无法初始化主类 myflink.WordCount

修改pom.xml

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-clients</artifactId>
	<version>${flink.version}</version>
	<scope>provided</scope>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-streaming-java</artifactId>
	<version>${flink.version}</version>
	<scope>provided</scope>
</dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

修改为

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-clients</artifactId>
	<version>${flink.version}</version>
	<scope>compile</scope>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-streaming-java</artifactId>
	<version>${flink.version}</version>
	<scope>compile</scope>
</dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

即可

实时计算

添加 一个滑动窗口的单词计数程序
WindowWordCount.class

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

public class WindowWordCount {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<Tuple2<String, Integer>> dataStream = env
                .socketTextStream("localhost", 9999)
                .flatMap(new Splitter())
                .keyBy(value -> value.f0)
                .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
                .sum(1);

        dataStream.print();

        env.execute("Window WordCount");
    }

    public static class Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
        @Override
        public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out) throws Exception {
            for (String word: sentence.split(" ")) {
                out.collect(new Tuple2<String, Integer>(word, 1));
            }
        }
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

请勿直接运行,因为本程序监听了本地端口9999所输入的数据,所以在运行程序之前,需要先开启端口9999
在Terminal输入
nc -lk 9999
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mkvsZ6ZI-1658644740596)(media/16586347433761/16586433433672.jpg)]

进入输入模式,此时启动程序 WindowWordCount
程序启动完成后
在Terminal输入一些数据
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wOBQXiA1-1658644740597)(media/16586347433761/16586434534173.jpg)]
程序输出单词与出现的次数
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wvwCWFQW-1658644740597)(media/16586347433761/16586434700264.jpg)]

笔者使用的是5s的滑窗,可根据参数调整时间
.window(TumblingProcessingTimeWindows.of(Time.seconds(5)))

提交 Flink Job

打包项目

mvn clean package -Dmaven.test.skip=true
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DqRgAAaw-1658644740599)(media/16586347433761/16586438672595.jpg)]

运行任务

在flink目录下执行
bin/flink run -c ${类相对路径} ${Jar绝对路径}

bin/flink run -c myflink.WordCount /Users/ximu/Project/Java/flink-project/target/flink-project-0.1.jar

运行结果
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-T1H8nEA3-1658644740599)(media/16586347433761/16586441670526.jpg)]

也可在Flink控制台查看任务运行状态
在这里插入图片描述

好了,Flink的探索先告一段落了,欢迎给我留言~

参考
Flink从入门到放弃(入门篇2)-本地环境搭建&构建第一个Flink应用.md

如何使用 Maven 配置您的项目

Flink DataStream API 编程指南

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/395813
推荐阅读
相关标签
  

闽ICP备14008679号