赞
踩
今天给大家带来一个有意思的智能优化算法,IBL算法。
先说效果:在CEC2005函数集测试,基本上毫无压力,把把都能预测的很准确,而且速度极快。大家可以自行尝试哈。
为啥说这个算法有意思呢,大家看IBL的英文全称是:Incomprehensible but Intelligible-in-time logics,我在这里给大家直译成中文就是:难以理解但又能及时理解的逻辑。可能我翻译的不太准确啊,但是我又结合他的摘要,大概的理解就是:人类的思维不像计算机那样,人类的思维是可以随着时间、事物的变化而变化的,在之前看起来毫无逻辑的事情,在经过人类学习一段时间后,这个事情就会变得很有逻辑了。不得不说老外这个思维是真的奇特哈,根据这个也能提出一个新算法,而且效果还很不错。大家感兴趣的可以去看看原文。
参考文献:
Mirrashid, M.; Naderpour, H. Incomprehensible but Intelligible-in-time logics: Theory and optimization algorithm. Knowl.-Based Syst. 2023, 264, 110305. doi点击链接跳转原文
废话不多说,依旧是2005函数集的测试,附上2005函数集的理论范围:
大部分优化函数在F8上的表现是不太好的,也就寻优到-4000多,咱们试一下这个IBL:
WOW,直接就干到-9700多去了,看样子不错呀,回头了我会将2023年最新的算法做一个对比,决一雌雄一下。
再试一个F14的,理论值是1,能找到0.998004,还阔以
最后再来一个:
上核心代码!
- function [Bests_Results,n_it_phase1,n_it_phase2,n_it_phase3,costs1,costs2,costs3] = ILA (CostFunction,Vmin,Vmax,nV,nNL,nModel,nIt,mIt_Phase1,mIt_Phase2,Bmin,Bmax,nRep,nIt_classification)
-
- %% Initialization
- Empty.NL = []; % Current NL
- Empty.NLprevious = []; % Previous NL
- Empty.Cost = inf;
- Empty1.NL = []; % Current NL
- Empty1.Average = []; % Previous NL
- Empty1.Cost = inf;
- Empty1.Members = [];
- Experts = repmat (Empty, nNL, 1); % Experts
- n_it_phase1 = round(nIt*mIt_Phase1); % Number of iterations in phase 1
- n_it_phase2 = round(nIt*mIt_Phase2); % Number of iterations in phase 2
- n_it_phase3 = nIt-n_it_phase1-n_it_phase2; % Number of iterations in phase 3
- costs1 = zeros(n_it_phase1,1); % Costs of the phase 1
- costs2 = zeros(n_it_phase2,1); % Costs of the phase 2
- costs3 = zeros(n_it_phase3,1); % Costs of the phase 3
- n_Groups = zeros(nModel,1);
- Em.NL = [];
- Em1.NL = [];
- Em1.Cost = inf;
- Expert_IbI = repmat (Em1, 1, 1); % The best solution of the current generation
- Logic = repmat (Em1, 1, 1); % The best solution before the current generation
- Expert_new = repmat (Em1, 1, 1);
- K0 = repmat (Em, nNL, 1); % Knowledge 0
- K1 = repmat (Em, nNL, 1); % Knowledge 1
- Expert_new.NL = [];
- Expert_new.Cost = inf;
- Knowledge_Phase1 = K0;
- Knowledge_Phase2 = K0;
- Knowledge_Phase3 = K0;
- GroupNumber = ones(nNL,1);
- Em2.NL = [];
- Em2.Cost = inf;
- Bests_Results = repmat (Em2, nIt, 1);
-
- if length(Vmin) ~= (nV)
- Vmin=Vmin.*ones(1,nV);
- Vmax=Vmax.*ones(1,nV);
- end
-
- for i = 1:nNL
- Experts(i).NL = unifrnd(Vmin,Vmax,1,nV);
- Experts(i).NLprevious = unifrnd(Vmin,Vmax,1,nV);
- Experts(i).Cost = CostFunction(Experts(i).NL);
- end
-
- % Extract the Logic (Best NL in the previous solutions)
- for i = 1:nNL
- if CostFunction(Experts(i).NLprevious) <= Logic.Cost
- Logic.Cost = CostFunction(Experts(i).NLprevious); % The best solution of before the current generation
- Logic.NL = Experts(i).NLprevious;
- end
- if Experts(i).Cost <= Expert_IbI.Cost
- Expert_IbI.Cost = Experts(i).Cost; % The best solution of the current generation
- Expert_IbI.NL = Experts(i).NL;
- end
- end
-
- n_t = zeros(nModel,1);
- nt = round((n_it_phase1)/nModel);
- for m = 1:nModel
- n_t(m,1) = nt;
- end
- n_t(nModel,1) = (n_it_phase1)-(nModel-1)*nt;
-
- for m = 1:nModel
- n_Groups(m,1) = randi(round(nNL/2)); % Number of workgropus in each model
- end
-
- %% Phase 0: Grouping (Clustering)
-
- for m = 1:nModel
-
- % Clustering
- MAT = zeros(nNL,nV);
- for i = 1:nNL
- MAT(i,:) = Experts(i).NL;
- end
- opts = statset('MaxIter',nIt_classification);
- lastwarn('Success');
- GroupNumber0 = GroupNumber;
- GroupNumber = kmeans(MAT,n_Groups(m,1),'Distance','sqeuclidean','Replicates',nRep,'Options',opts);
- [warningMessage, warningMessageID] = lastwarn;
- if contains(warningMessage, 'Failed to converge')
- warnStruct = warning('off');
- GroupNumber = GroupNumber0;
- if m ==1
- n_Groups(m,1) = 1;
- else
- n_Groups(m,1) = n_Groups(m-1,1);
- end
- end
- Experts_Groups = repmat (Empty1, n_Groups(m,1),1);
- n_members = zeros(n_Groups(m,1),1);
-
- for c = 1:n_Groups(m,1)
- nn=0;
- for i = 1:nNL
- if GroupNumber(i,1) == c
- nn = nn+1;
- end
- end
- n_members(c,1) = nn;
- Experts_Groups(c).Members = repmat (Em, n_members(c,1), 1);
- end
-
- %% Phase 1: Workgropus
- for it_phase1 = 1:n_t(m,1)
-
- for c = 1:n_Groups(m,1)
- SUM = 0;
- num = 0;
- for i = 1:nNL
- if GroupNumber(i,1) == c
- num = num+1;
- SUM = Experts(i).NL + SUM;
- Experts_Groups(c).Members(num).NL = Experts(i).NL;
- if Experts(i).Cost <= Experts_Groups(c).Cost
- Experts_Groups(c).NL = Experts(i).NL;
- Experts_Groups(c).Cost = Experts(i).Cost;
- end
- end
- end
- Experts_Groups(c).Average = SUM./n_members(c,1);
- end
-
- % Calculate the ratios
- D = zeros(nNL,1);
- P = zeros(nNL,1);
- C = zeros(nNL,1);
- for i = 1:nNL
- C(i,1) = sqrt(sum((Experts(i).NL-Logic.NL).^2));
- D(i,1) = sqrt(sum((Experts(i).NL-Experts(i).NLprevious).^2));
- P(i,1) = sqrt(sum((Experts(i).NL-Experts_Groups(GroupNumber(i,1)).NL).^2));
- end
- min_D = min(D); max_D = max(D);
- min_P = min(P); max_P = max(P);
- min_C = min(C); max_C = max(C);
-
- Rc = (C-min_C)./(max_C-min_C);
- Rp = (P-min_P)./(max_P-min_P);
- RD = (D-min_D)./(max_D-min_D);
- Bc = Bmin + (Bmax-Bmin)*rand();
- Bp = Bmin + (Bmax-Bmin)*rand();
- BD = Bmin + (Bmax-Bmin)*rand();
-
- for i = 1:nNL
- B = Bmin + (Bmax-Bmin)*rand();
- if (Rc(i,1) <= Bc) && (Rp(i,1) <= Bp)
- random_member = randi (n_members(GroupNumber(i,1),1));
- K0(i).NL = Rp(i,1).*(Experts(i).NL + Experts_Groups(GroupNumber(i,1)).Members(random_member).NL)./2;
- elseif (Rc(i,1) <= Bc) && (Rp(i,1) > Bp)
- K0(i).NL = Rp(i,1).*(Experts(i).NL + Experts_Groups(GroupNumber(i,1)).Average)./2;
- elseif (Rc(i,1) > Bc) && (Rp(i,1) <= Bp)
- random_member = randi (n_members(GroupNumber(i,1),1));
- K0(i).NL = Rp(i,1).*(Experts_Groups(GroupNumber(i,1)).NL + Experts_Groups(GroupNumber(i,1)).Members(random_member).NL)./2;
- elseif (Rc(i,1) > Bc) && (Rp(i,1) > Bp)
- K0(i).NL = Rp(i,1).*(Experts_Groups(GroupNumber(i,1)).NL + Experts_Groups(GroupNumber(i,1)).Average)./2;
- end
-
- if RD(i,1)<= BD
- K1(i).NL = (rand()).*(Experts_Groups(GroupNumber(i,1)).Average);
- else
- K1(i).NL = (rand()).*(unifrnd(Vmin,Vmax,1,nV));
- end
-
- Knowledge_Phase1(i).NL = abs(K0(i).NL + K1(i).NL)./2;
-
- % Update the NL
- alpha1 = -1.5+3.*rand(1,nV);
- Expert_new.NL = Experts(i).NL + alpha1.*(Knowledge_Phase1(i).NL);
- Expert_new.NL = max(Expert_new.NL, Vmin);
- Expert_new.NL = min(Expert_new.NL, Vmax);
- E1 = Experts(i).NL;
- Expert_new.Cost = CostFunction(Expert_new.NL);
-
- COEF = -1.5+3*rand();
- K = rand().*Experts_Groups(GroupNumber(i,1)).NL;
- NEW.NL = COEF.*(Expert_new.NL) + K;
- NEW.NL = max(NEW.NL, Vmin);
- NEW.NL = min(NEW.NL, Vmax);
- NEW.Cost = CostFunction(NEW.NL);
- if NEW.Cost < Expert_new.Cost
- Expert_new = NEW;
- end
-
-
- if Expert_new.Cost < Experts(i).Cost
- Experts(i).NL = Expert_new.NL;
- Experts(i).Cost = Expert_new.Cost;
- end
- if Experts(i).NL ~= E1
- Experts(i).NLprevious = E1;
- end
- E1 = Expert_IbI.NL;
- if Experts(i).Cost < Expert_IbI.Cost
- Expert_IbI.Cost = Experts(i).Cost;
- Expert_IbI.NL = Experts(i).NL;
- end
- if Expert_IbI.NL ~= E1
- Logic.NL = E1;
- end
- end
-
- costs1((m-1)*(n_t(1,1))+it_phase1,1) = Expert_IbI.Cost;
- Bests_Results((m-1)*(n_t(1,1))+it_phase1).NL = Expert_IbI.NL;
- Bests_Results((m-1)*(n_t(1,1))+it_phase1).Cost = Expert_IbI.Cost;
-
- end
- end
- NUM = n_it_phase1;
- for it_phase2 = 1:n_it_phase2
- NUM = NUM+1;
- % Calculate the ratios
- for i = 1:nNL
- C(i,1) = sqrt(sum((Experts(i).NL-Logic.NL).^2));
- D(i,1) = sqrt(sum((Experts(i).NL-Experts(i).NLprevious).^2));
- P(i,1) = sqrt(sum((Experts(i).NL-Expert_IbI.NL).^2));
- end
- min_D = min(D); max_D = max(D);
- min_P = min(P); max_P = max(P);
- min_C = min(C); max_C = max(C);
-
- Rc = (C-min_C)./(max_C-min_C);
- Rp = (P-min_P)./(max_P-min_P);
- RD = (D-min_D)./(max_D-min_D);
- Bc = Bmin + (Bmax-Bmin)*rand();
- Bp = Bmin + (Bmax-Bmin)*rand();
- BD = Bmin + (Bmax-Bmin)*rand();
-
- for i = 1:nNL
- B = Bmin + (Bmax-Bmin)*rand();
- if (Rc(i,1) <= Bc) && (Rp(i,1) <= Bp)
- random_member = randi (nNL);
- K0(i).NL = Rp(i,1).*(Experts(i).NL + Experts(random_member).NL)./2;
- elseif (Rc(i,1) <= Bc) && (Rp(i,1) > Bp)
- SUM = 0;
- for ii = 1:nNL
- SUM = Experts(ii).NL + SUM;
- end
- Average = SUM./nNL;
- K0(i).NL = Rp(i,1).*(Experts(i).NL + Average)./2;
- elseif (Rc(i,1) > Bc) && (Rp(i,1) <= Bp)
- random_member = randi (nNL);
- K0(i).NL = Rp(i,1).*(Expert_IbI.NL + Experts(random_member).NL)./2;
- elseif (Rc(i,1) > Bc) && (Rp(i,1) > Bp)
- SUM = 0;
- for ii = 1:nNL
- SUM = Experts(ii).NL + SUM;
- end
- Average = SUM./nNL;
- K0(i).NL = Rp(i,1).*(Expert_IbI.NL + Average)./2;
- end
-
- if RD(i,1)<= BD
- SUM = 0;
- for ii = 1:nNL
- SUM = Experts(ii).NL + SUM;
- end
- Average = SUM./nNL;
- K1(i).NL = (rand()).*(Average);
- else
- K1(i).NL = (rand()).*(unifrnd(Vmin,Vmax,1,nV));
- end
-
- % Update the NL
- Knowledge_Phase2(i).NL = abs(K0(i).NL + K1(i).NL)./2;
- alpha2 = -0.75+1.5.*rand(1,nV);
- Expert_new.NL = Experts(i).NL + alpha2.*(Knowledge_Phase2(i).NL);
- Expert_new.NL = max(Expert_new.NL, Vmin);
- Expert_new.NL = min(Expert_new.NL, Vmax);
- E1 = Experts(i).NL;
- Expert_new.Cost = CostFunction(Expert_new.NL);
-
- COEF = -0.75+1.5*rand();
- K = rand().*(Expert_IbI.NL);
- NEW.NL = COEF.*(Expert_new.NL) + K;
- NEW.NL = max(NEW.NL, Vmin);
- NEW.NL = min(NEW.NL, Vmax);
- NEW.Cost = CostFunction(NEW.NL);
-
- if NEW.Cost < Expert_new.Cost
- Expert_new = NEW;
- end
-
- if Expert_new.Cost < Experts(i).Cost
- Experts(i).NL = Expert_new.NL;
- Experts(i).Cost = Expert_new.Cost;
- end
- if Experts(i).NL ~= E1
- Experts(i).NLprevious = E1;
- end
- E1 = Expert_IbI.NL;
- if Experts(i).Cost < Expert_IbI.Cost
- Expert_IbI.Cost = Experts(i).Cost;
- Expert_IbI.NL = Experts(i).NL;
- end
- if Expert_IbI.NL ~= E1
- Logic.NL = E1;
- end
- end
-
- costs2(it_phase2,1) = Expert_IbI.Cost;
- Bests_Results(NUM).NL = Expert_IbI.NL;
- Bests_Results(NUM).Cost = Expert_IbI.Cost;
- end
-
- %% Phase 3: IbI Logic Search
-
- for it_phase3 = 1:n_it_phase3
- NUM = NUM+1;
- for i = 1:nNL
- SUM = 0;
- for ii = 1:nNL
- SUM = SUM + Experts(ii).NL;
- end
- Average = SUM./nNL;
-
- factor = randi(2);
- if factor == 1
- Knowledge_Phase3(i).NL = abs(Average - Experts(randi(nNL)).NL);
- else
- Knowledge_Phase3(i).NL = abs(Average - Expert_IbI.NL);
- end
- alpha3 = -0.25+0.5.*rand(1,nV);
- Expert_new.NL = Experts(i).NL + alpha3.*(Knowledge_Phase3(i).NL);
-
- Expert_new.NL = max(Expert_new.NL, Vmin);
- Expert_new.NL = min(Expert_new.NL, Vmax);
- Expert_new.Cost = CostFunction(Expert_new.NL);
-
- COEF = -0.25+0.5*rand();
- K = rand().*(Expert_IbI.NL);
- NEW.NL = COEF.*(Expert_new.NL) + K;
- NEW.NL = max(NEW.NL, Vmin);
- NEW.NL = min(NEW.NL, Vmax);
- NEW.Cost = CostFunction(NEW.NL);
- if NEW.Cost < Expert_new.Cost
- Expert_new = NEW;
- end
-
- if Expert_new.Cost < Experts(i).Cost
- Experts(i).NL = Expert_new.NL;
- Experts(i).Cost = Expert_new.Cost;
- end
- if Experts(i).Cost < Expert_IbI.Cost
- Expert_IbI.Cost = Experts(i).Cost;
- Expert_IbI.NL = Experts(i).NL;
- end
- end
- costs3(it_phase3,1) = Expert_IbI.Cost;
- Bests_Results(NUM).NL = Expert_IbI.NL;
- Bests_Results(NUM).Cost = Expert_IbI.Cost;
- end
-
- %% Extract the results
- Expert_IbI.Cost = CostFunction(Expert_IbI.NL);
-
- end

下方小卡片回复关键词:2023,免费获取2023年智能优化算法合集matlab代码。
后续会继续发布2023年其他最新优化算法,敬请关注。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。