当前位置:   article > 正文

IDEA连接spark集群

IDEA连接spark集群

写在前面

我所使用的spark集群是基于docker搭建的,一共三个节点,一个master和两个slave,安装过程参考我之前的博客https://blog.csdn.net/weixin_43622131/article/details/110098712
宿主机使用的是windows10专业版

一、安装Scala插件

在这里插入图片描述
搜索Scala,下载如图所示的插件,因为是从国外源下载,速度比较慢,所以建议科学上网下载
在这里插入图片描述

二、新建一个Maven项目

在这里插入图片描述
在这里插入图片描述
自己填写GroupId和ArtifactId
在这里插入图片描述

三、编写pom.xml文件

里面的spark插件版本和hadoop插件版本要和spark集群的版本相对应,避免出现问题

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>spark</artifactId>
    <version>1.0-SNAPSHOT</version>


    <properties>
        <scala.version>2.11.8</scala.version>
        <hadoop.version>2.7.4</hadoop.version>
    </properties>

    <repositories>
        <repository>
            <id>scala-tools.org</id>
            <name>Scala-Tools Maven2 Repository</name>
            <url>http://scala-tools.org/repo-releases</url>
        </repository>
    </repositories>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.10</artifactId>
            <version>2.4.7</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.10</artifactId>
            <version>2.4.7</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.10</artifactId>
            <version>2.4.7</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>

</project>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

四、导入Scala环境

在windows中如果没有Scala环境则先安装Scala环境
由于安装包下载很慢我这里直接给出安装包,版本是2.11.8(要与spark集群的Scala版本一致)
链接:https://pan.baidu.com/s/1I62fSLbr2NakycxioTlopw
提取码:oq2j
选择Project Structure
在这里插入图片描述
在Libraries里导入Scala SDK环境
在这里插入图片描述
选择Scala的安装路径即可识别Scala环境
在这里插入图片描述
在src/main下创建scala目录在这里插入图片描述
在Project Structure下的Modules中将scala文件夹设置成source文件夹

在这里插入图片描述

五、导入spark的jar包

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我是将spark的包直接解压,然后将其中的jars文件夹导入,如果不做这一步运行程序的时候会出现jar包找不到的错误,导入spark的jar包就可以了
在这里插入图片描述

六、编写Scala程序并提交给集群

在scala目录下创建一个Scala类,我所创建的是SparkPi2类作为例子,是用来计算圆周率的
在这里插入图片描述



/**
 * Created by zf on 12/3/20.
 */
import scala.math.random

import org.apache.spark._

/** Computes an approximation to pi */
object SparkPi2 {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("Spark Pi").set("spark.executor.memory", "512m")
      .set("spark.driver.host","10.0.75.1")//这个ip很重要,我因为这个ip没有设置正确卡了好长时间,我使用的是docker,这个ip就要设置为本机在docker分配的虚拟网卡中的ip地址,如果设置成其他网卡的ip会被主机拒绝访问
      .set("spark.driver.cores","1")
      .setMaster("spark://127.0.0.1:7077") //这里应设为master的ip加上配置spark时设置的端口,一般都为7077,因为我使用的是docker所以将master的端口映射到本地了,所以直接用127.0.0.1来访问
      .setJars(List("D:\\自然语言处理\\spark\\out\\artifacts\\SparkExample_jar\\spark.jar"))

    val spark = new SparkContext(conf)
    val slices = if (args.length > 0) args(0).toInt else 2
    val n = 100000 * slices
    val count = spark.parallelize(1 to n, slices).map { i =>
      val x = random * 2 - 1
      val y = random * 2 - 1
      if (x * x + y * y < 1) 1 else 0
    }.reduce(_ + _)
    println("Pi is roughly " + 4.0 * count / n)
    spark.stop()
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

再强调下这个参数,如果是docker搭建的spark
一定要使用docker分配的虚拟网卡的ip!!!
一定要使用docker分配的虚拟网卡的ip!!!
一定要使用docker分配的虚拟网卡的ip!!!

set("spark.driver.host","10.0.75.1")
  • 1

在这里插入图片描述
如果没有设置这个参数或者设置的ip错误就会出现下列错误,这个错误困扰了我很久,终于在改成了docker分配虚拟网卡的ip后得到解决在这里插入图片描述
看一下运行的结果吧:
成功连接到了spark集群
在这里插入图片描述
两个节点在执行各自的task
在这里插入图片描述
运行出结果
在这里插入图片描述


如果要读取文件的话,是读取不了本地的或者集群上本地文件的,会报找不到文件,所以必须将文件上传到hdfs上通过hdfs进行读取。
这里读取hdfs,如果使用的是docker搭建的集群则无法直接访问,需要将9000端口映射到本地,然后使用docker网络给本地分配的IP进行访问,因为使用spark集群运行程序要保证每个节点都能访问数据,所以要使windows能被所有节点访问,则需要关闭windows的防火墙,就可以成功访问hdfs文件了。

import java.io.FileWriter
import java.net.InetAddress

import org.apache.spark._


object test4  {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("test2").set("spark.executor.memory", "512m")
      .set("spark.driver.host", "10.0.75.1")
      .set("spark.driver.cores", "2")
      .setMaster("spark://127.0.0.1:7077") //spark://127.0.0.1:7077
      .setJars(List("D:\\自然语言处理\\spark\\out\\artifacts\\SparkExample_jar\\spark.jar")) // maven打的jar包的路径
      .set("spark.driver.allowMultipleContexts", "true")
    val sc = new SparkContext(conf)
    // 读取文件A
    var A = sc.textFile("hdfs://10.0.75.1:9000/test2/Data01.txt") // 关闭windows的防火墙
    A.collect().foreach(e => println(e))
  }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

成功运行
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/427225
推荐阅读
相关标签
  

闽ICP备14008679号