赞
踩
论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
原论文地址: https://arxiv.org/abs/2103.14030
官方开源代码地址:https://github.com/microsoft/Swin-Transformer
class PatchEmbed(nn.Module):"""2D Image to Patch Embeddingsplit image into non-overlapping patches 即将图片划分成一个个没有重叠的patch"""def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()patch_size = (patch_size, patch_size)self.patch_size = patch_sizeself.in_chans = in_cself.embed_dim = embed_dimself.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):_, _, H, W = x.shape# padding# 如果输入图片的H,W不是patch_size的整数倍,需要进行paddingpad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)if pad_input:# to pad the last 3 dimensions,# (W_left, W_right, H_top,H_bottom, C_front, C_back)x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1], # 表示宽度方向右侧填充数0, self.patch_size[0] - H % self.patch_size[0], # 表示高度方向底部填充数0, 0))# 下采样patch_size倍x = self.proj(x)_, _, H, W = x.shape# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, W
class PatchMerging(nn.Module):r""" Patch Merging Layer.步长为2,间隔采样Args:dim (int): Number of input channels.norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm"""def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)self.norm = norm_layer(4 * dim)def forward(self, x, H, W):"""x: B, H*W, C 即输入x的通道排列顺序"""B, L, C = x.shapeassert L == H * W, "input feature has wrong size"x = x.view(B, H, W, C)# padding# 如果输入feature map的H,W不是2的整数倍,需要进行paddingpad_input = (H % 2 == 1) or (W % 2 == 1)if pad_input:# to pad the last 3 dimensions, starting from the last dimension and moving forward.# (C_front, C_back, W_left, W_right, H_top, H_bottom)# 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))# 以2为间隔进行采样x0 = x[:, 0::2, 0::2, :] # [B, H/2, W/2, C]x1 = x[:, 1::2, 0::2, :] # [B, H/2, W/2, C]x2 = x[:, 0::2, 1::2, :] # [B, H/2, W/2, C]x3 = x[:, 1::2, 1::2, :] # [B, H/2, W/2, C]x = torch.cat([x0, x1, x2, x3], -1) # ————————> [B, H/2, W/2, 4*C] 在channael维度上进行拼接x = x.view(B, -1, 4 * C) # [B, H/2*W/2, 4*C]x = self.norm(x)x = self.reduction(x) # [B, H/2*W/2, 2*C]return x
def create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1# 将img_mask划分成一个一个窗口mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] # 输出的是按照指定的window_size划分成一个一个窗口的数据mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1] 使用了广播机制# [nW, Mh*Mw, Mh*Mw]# 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask
class BasicLayer(nn.Module):"""A basic Swin Transformer layer for one stage.Args:dim (int): Number of input channels.depth (int): Number of blocks.num_heads (int): Number of attention heads.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False."""def __init__(self, dim, depth, num_heads, window_size,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()self.dim = dimself.depth = depthself.window_size = window_sizeself.use_checkpoint = use_checkpointself.shift_size = window_size // 2 # 表示向右和向下偏移的窗口大小 即窗口大小除以2,然后向下取整# build blocksself.blocks = nn.ModuleList([SwinTransformerBlock(dim=dim,num_heads=num_heads,window_size=window_size,shift_size=0 if (i % 2 == 0) else self.shift_size, # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSAmlp_ratio=mlp_ratio,qkv_bias=qkv_bias,drop=drop,attn_drop=attn_drop,drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer)for i in range(depth)])# patch merging layer 即:PatchMerging类if downsample is not None:self.downsample = downsample(dim=dim, norm_layer=norm_layer)else:self.downsample = Nonedef create_mask(self, x, H, W):# calculate attention mask for SW-MSA# 保证Hp和Wp是window_size的整数倍Hp = int(np.ceil(H / self.window_size)) * self.window_sizeWp = int(np.ceil(W / self.window_size)) * self.window_size# 拥有和feature map一样的通道排列顺序,方便后续window_partitionimg_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1]h_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size),slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1# 将img_mask划分成一个一个窗口mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] # 输出的是按照指定的window_size划分成一个一个窗口的数据mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw]attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1] 使用了广播机制# [nW, Mh*Mw, Mh*Mw]# 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) # 即对于不等于0的位置,赋值为-100;否则为0return attn_maskdef forward(self, x, H, W):attn_mask = self.create_mask(x, H, W) # [nW, Mh*Mw, Mh*Mw] # 制作mask蒙版for blk in self.blocks:blk.H, blk.W = H, Wif not torch.jit.is_scripting() and self.use_checkpoint:x = checkpoint.checkpoint(blk, x, attn_mask)else:x = blk(x, attn_mask)if self.downsample is not None:x = self.downsample(x, H, W)H, W = (H + 1) // 2, (W + 1) // 2return x, H, W
class SwinTransformerBlock(nn.Module):r""" Swin Transformer Block.Args:dim (int): Number of input channels.num_heads (int): Number of attention heads.window_size (int): Window size.shift_size (int): Shift size for SW-MSA.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Truedrop (float, optional): Dropout rate. Default: 0.0attn_drop (float, optional): Attention dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm"""def __init__(self, dim, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioassert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim) # 先经过层归一化处理# WindowAttention即为:SW-MSA或者W-MSA模块self.attn = WindowAttention(dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)def forward(self, x, attn_mask):H, W = self.H, self.WB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)# pad feature maps to multiples of window size# 把feature map给pad到window size的整数倍pad_l = pad_t = 0pad_r = (self.window_size - W % self.window_size) % self.window_sizepad_b = (self.window_size - H % self.window_size) % self.window_sizex = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))_, Hp, Wp, _ = x.shape# cyclic shift# 判断是进行SW-MSA或者是W-MSA模块if self.shift_size > 0:# https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) #进行数据移动操作else:shifted_x = xattn_mask = None# partition windows# 将窗口按照window_size的大小进行划分,得到一个个窗口x_windows = window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C]# 将数据进行展平操作x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C]# W-MSA/SW-MSA"""# 进行多头自注意力机制操作"""attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C]# merge windowsattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C]# 将多窗口拼接回大的featureMapshifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C]# reverse cyclic shift# 将移位的数据进行还原if self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_x# 如果进行了padding操作,需要移出掉相应的padif pad_r > 0 or pad_b > 0:# 把前面pad的数据移除掉x = x[:, :H, :W, :].contiguous()x = x.view(B, H * W, C)# FFNx = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return x
- """ Swin Transformer
- A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`- https://arxiv.org/pdf/2103.14030Code/weights from https://github.com/microsoft/Swin-Transformer"""import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as checkpoint
- import numpy as np
- from typing import Optionaldef drop_path_f(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_() # binarizeoutput = x.div(keep_prob) * random_tensorreturn outputclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path_f(x, self.drop_prob, self.training)"""将窗口按照window_size的大小进行划分,得到一个个窗口
- """
- def window_partition(x, window_size: int):"""将feature map按照window_size划分成一个个没有重叠的windowArgs:x: (B, H, W, C)window_size (int): window size(M)Returns:windows: (num_windows*B, window_size, window_size, C)"""B, H, W, C = x.shapex = x.view(B, H // window_size, window_size, W // window_size, window_size, C)# permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]# view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) # 输出的是按照指定的window_size划分成一个一个窗口的数据return windowsdef window_reverse(windows, window_size: int, H: int, W: int):"""将一个个window还原成一个feature mapArgs:windows: (num_windows*B, window_size, window_size, C)window_size (int): Window size(M)H (int): Height of imageW (int): Width of imageReturns:x: (B, H, W, C)"""B = int(windows.shape[0] / (H * W / window_size / window_size))# view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)# permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]# view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)return xclass PatchEmbed(nn.Module):"""2D Image to Patch Embeddingsplit image into non-overlapping patches 即将图片划分成一个个没有重叠的patch"""def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()patch_size = (patch_size, patch_size)self.patch_size = patch_sizeself.in_chans = in_cself.embed_dim = embed_dimself.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):_, _, H, W = x.shape# padding# 如果输入图片的H,W不是patch_size的整数倍,需要进行paddingpad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)if pad_input:# to pad the last 3 dimensions,# (W_left, W_right, H_top,H_bottom, C_front, C_back)x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1], # 表示宽度方向右侧填充数0, self.patch_size[0] - H % self.patch_size[0], # 表示高度方向底部填充数0, 0))# 下采样patch_size倍x = self.proj(x)_, _, H, W = x.shape# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, Wclass PatchMerging(nn.Module):r""" Patch Merging Layer.步长为2,间隔采样Args:dim (int): Number of input channels.norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm"""def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)self.norm = norm_layer(4 * dim)def forward(self, x, H, W):"""x: B, H*W, C 即输入x的通道排列顺序"""B, L, C = x.shapeassert L == H * W, "input feature has wrong size"x = x.view(B, H, W, C)# padding# 如果输入feature map的H,W不是2的整数倍,需要进行paddingpad_input = (H % 2 == 1) or (W % 2 == 1)if pad_input:# to pad the last 3 dimensions, starting from the last dimension and moving forward.# (C_front, C_back, W_left, W_right, H_top, H_bottom)# 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))# 以2为间隔进行采样x0 = x[:, 0::2, 0::2, :] # [B, H/2, W/2, C]x1 = x[:, 1::2, 0::2, :] # [B, H/2, W/2, C]x2 = x[:, 0::2, 1::2, :] # [B, H/2, W/2, C]x3 = x[:, 1::2, 1::2, :] # [B, H/2, W/2, C]x = torch.cat([x0, x1, x2, x3], -1) # ————————> [B, H/2, W/2, 4*C] 在channael维度上进行拼接x = x.view(B, -1, 4 * C) # [B, H/2*W/2, 4*C]x = self.norm(x)x = self.reduction(x) # [B, H/2*W/2, 2*C]return x"""
- MLP模块
- """
- class Mlp(nn.Module):""" MLP as used in Vision Transformer, MLP-Mixer and related networks"""def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.drop1 = nn.Dropout(drop)self.fc2 = nn.Linear(hidden_features, out_features)self.drop2 = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop1(x)x = self.fc2(x)x = self.drop2(x)return x"""
- WindowAttention即为:SW-MSA或者W-MSA模块
- """
- class WindowAttention(nn.Module):r""" Window based multi-head self attention (W-MSA) module with relative position bias.It supports both of shifted and non-shifted window.Args:dim (int): Number of input channels.window_size (tuple[int]): The height and width of the window.num_heads (int): Number of attention heads.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Trueattn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0proj_drop (float, optional): Dropout ratio of output. Default: 0.0"""def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):super().__init__()self.dim = dimself.window_size = window_size # [Mh, Mw]self.num_heads = num_headshead_dim = dim // num_headsself.scale = head_dim ** -0.5# define a parameter table of relative position bias# 创建偏置bias项矩阵self.relative_position_bias_table = nn.Parameter(torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH] 其元素的个数===>>[(2*Mh-1) * (2*Mw-1)]# get pair-wise relative position index for each token inside the windowcoords_h = torch.arange(self.window_size[0]) # 如果此处的self.window_size[0]为2的话,则生成的coords_h为[0,1]coords_w = torch.arange(self.window_size[1]) # 同理得coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # [2, Mh, Mw]coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw]# [2, Mh*Mw, 1] - [2, 1, Mh*Mw]relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Mh*Mw, Mh*Mw]relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2]relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 行标+(M-1)relative_coords[:, :, 1] += self.window_size[1] - 1 # 列表标+(M-1)relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw]self.register_buffer("relative_position_index", relative_position_index) # 将relative_position_index放入到模型的缓存当中self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)self.softmax = nn.Softmax(dim=-1)def forward(self, x, mask: Optional[torch.Tensor] = None):"""Args:x: input features with shape of (num_windows*B, Mh*Mw, C)mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None"""# [batch_size*num_windows, Mh*Mw, total_embed_dim]B_, N, C = x.shape# qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]# reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]q = q * self.scaleattn = (q @ k.transpose(-2, -1))# relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw]attn = attn + relative_position_bias.unsqueeze(0)# 进行mask,相同区域使用0表示;不同区域使用-100表示if mask is not None:# mask: [nW, Mh*Mw, Mh*Mw]nW = mask.shape[0] # num_windows# attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]# mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)attn = attn.view(-1, self.num_heads, N, N)attn = self.softmax(attn)else:attn = self.softmax(attn)attn = self.attn_drop(attn)# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]# transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]# reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B_, N, C)x = self.proj(x)x = self.proj_drop(x)return x"""SwinTransformerBlock
- """
- class SwinTransformerBlock(nn.Module):r""" Swin Transformer Block.Args:dim (int): Number of input channels.num_
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。