当前位置:   article > 正文

HDFS 原理及操作_hdfs文件上传的原理

hdfs文件上传的原理

1. HDFS 原理

HDFS(Hadoop Distributed File System)是一个分布式文件系统。它具有高容错性并提供了高吞吐量的数据访问,非常适合大规模数据集上的应用,它提供了一个高度容错性和高吞吐量的海量数据存储解决方案。

  • 高吞吐量访问:HDFS 的每个 Block 分布在不同的 Rack 上,在用户访问时,HDFS 会计算使用最近和访问量最小的服务器给用户提供。由于 Block 在不同的 Rack 上都有备份,所以不再是单数据访问,速度和效率是非常z快的。另外 HDFS 可以并行从服务器集群中读写,增加了文件读写的访问带宽。
  • 高容错性:系统故障不可避免,如何做到故障之后的数据恢复和容错处理是至关重要的。HDFS 通过多方面保证数据的可靠性,多份复制并且分布到物理位置的不同服务器上,数据校验功能、后台的连续自检数据一致性功能都为高容错提供了可能。
  • 线性扩展:因为 HDFS 的 Block 信息存放到 NameNode 上,文件的 Block 分布到 DataNode 上,当扩充的时候仅仅添加 DataNode 数量,系统可以在不停止服务的情况下做扩充,不需要人工干预。

2. HDFS 架构

如上图所示 HDFS 是 Master 和 Slave 的结构,分为 NameNode、Secondary NameNode 和 DataNode 三种角色。

  • NameNode:在 Hadoop1.X 中只有一个 Master 节点,管理 HDFS 的名称空间和数据块映射信息、配置副本策略和处理客户端请求。
  • Secondary NameNode:辅助 NameNode,分担 NameNode 工作,定期合并 fsimage 和 fsedits 并推送给 NameNode,紧急情况下可辅助恢复 NameNode。
  • DataNode:Slave 节点,实际存储数据、执行数据块的读写并汇报存储信息给 NameNode。

3. HDFS 读操作

  1. 客户端通过调用 FileSystem 对象的 open() 方法来打开希望读取的文件,对于 HDFS 来说,这个对象是分布式文件系统的一个实例;
  2. DistributedFileSystem 通过使用 RPC 来调用 NameNode 以确定文件起始块的位置,同一 Block 按照重复数会返回多个位置,这些位置按照 Hadoop 集群拓扑结构排序,距离客户端近的排在前面;
  3. 前两步会返回一个 FSDataInputStream 对象,该对象会被封装成 DFSInputStream 对象,DFSInputStream 可以方便的管理 datanode 和 namenode 数据流,客户端对这个输入流调用 read() 方法;
  4. 存储着文件起始块的 DataNode 地址的 DFSInputStream 随即连接距离最近的 DataNode,通过对数据流反复调用 read() 方法,可以将数据从 DataNode 传输到客户端;
  5. 到达块的末端时,DFSInputStream 会关闭与该 DataNode 的连接,然后寻找下一个块的最佳 DataNode,这些操作对客户端来说是透明的,从客户端的角度来看只是读一个持续不断的流;
  6. 一旦客户端完成读取,就对 FSDataInputStream 调用 close() 方法关闭文件读取。

4. HDFS 写操作

  1. 客户端通过调用 DistributedFileSystem 的 create() 方法创建新文件;
  2. DistributedFileSystem 通过 RPC 调用 NameNode 去创建一个没有 Blocks 关联的新文件,创建前 NameNode 会做各种校验,比如文件是否存在、客户端有无权限去创建等。如果校验通过,NameNode 会为创建新文件记录一条记录,否则就会抛出 IO 异常;
  3. 前两步结束后会返回 FSDataOutputStream 的对象,和读文件的时候相似,FSDataOutputStream 被封装成 DFSOutputStream,DFSOutputStream 可以协调 NameNode 和 Datanode。客户端开始写数据到 DFSOutputStream,DFSOutputStream 会把数据切成一个个小的数据包,并写入内部队列称为“数据队列”(Data Queue);
  4. DataStreamer 会去处理接受 Data Queue,它先问询 NameNode 这个新的 Block 最适合存储在哪几个 DataNode 里,比如重复数是 3,那么就找到 3 个最适合的 DataNode,把他们排成一个 pipeline。DataStreamer 把 Packet 按队列输出到管道的第一个 Datanode 中,第一个 DataNode 又把 Packet 输出到第二个 DataNode 中,以此类推;
  5. DFSOutputStream 还有一个队列叫 Ack Quene,也是由 Packet 组成,等待 DataNode 的收到响应,当 Pipeline 中的所有 DataNode 都表示已经收到的时候,这时 Akc Quene 才会把对应的 Packet 包移除掉;
  6. 客户端完成写数据后调用 close() 方法关闭写入流;
  7. DataStreamer 把剩余的包都刷到 Pipeline 里然后等待 Ack 信息,收到最后一个 Ack 后,通知 NameNode 把文件标示为已完成。

5.HDFS 中的常用命令

  1. hadoop fs -ls /
  2. hadoop fs -lsr
  3. hadoop fs -mkdir /user/hadoop
  4. hadoop fs -put a.txt /user/hadoop/
  5. hadoop fs -get /user/hadoop/a.txt /
  6. hadoop fs -cp src dst
  7. hadoop fs -mv src dst
  8. hadoop fs -cat /user/hadoop/a.txt
  9. hadoop fs -rm /user/hadoop/a.txt
  10. hadoop fs -rmr /user/hadoop/a.txt
  11. hadoop fs -text /user/hadoop/a.txt
  12. hadoop fs -copyFromLocal localsrc dst # 与hadoop fs -put 功能类似
  13. hadoop fs -moveFromLocal localsrc dst # 将本地文件上传到 hdfs,同时删除本地文件
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/523362
推荐阅读
相关标签
  

闽ICP备14008679号