赞
踩
ARMv8 提供了两种安全状态:Secure 和 Non-secure,也就是安全和非安全,Non-secure 也就是正常世界(NormalWorld)。我们可以在 Non-secure 运行通用操作系统,比如 Linux,在 Secure 运行可信操作系统,比如OP-TEE,这两个操作系统可以同时运行,这个需要处理器支持 ARM 的 TrustZone 功能。在 Normal world 和 Secure world下,ARMv8 个 EL 等级对应的内容和在 ARMv8 的 AArch32 模式下,处理器模式如图所示:
在 AArch32 模式下,EL0~LE3 对应 ARMv7 的不同工作模式:
可以看出,只有 EL3 是用于安全监视器的,所以 TF-A 主要工作在 EL3 下,在看 TF-A源码的时候会看到大量的“EL3”字样的文件或代码。
ATF带来最大的变化是信任链的建立(Trust Chain),整个启动过程包括从EL3到EL0的信任关系的打通,过程比较抽象。NXP的相关文档[2]比较充分和公开,它的源代码也是开源的[3]。我们结合它的文档和源代码来理解一下。
ARM开源了ATF的基本功能模块,大家可以在这里下载:
git clone https://github.com/ARM-software/arm-trusted-firmware.git
里面已经包含了不少平台,但这些平台的基础代码有些是缺失的,尤其是和芯片部分和与UEFI联动部分。这里我推荐它的一个分支:NXP的2160A芯片的实现。
ARM推出了System Ready计划,效果相当不错,关于它我们今后再单独讲。2020年底,ARM在OSFC推出新的一批System Ready机型[4],NXP 2160A名列其中:
来源:参考资料4
ATF代码下载可以用:
git clone https://source.codeaurora.org/external/qoriq/qoriq-components/atf -b LX2160_UEFI_ACPI_EAR3
UEFI代码下载可以用图片上的地址。我们可以把参考资料2和这些代码对照来看,加深理解。
支持ATF的ARM机器,启动过程如下
来源:参考资料2
注意蓝色箭头上的数字,它是启动顺序。一切起源于在EL3的BL1。
BL1:Trusted Boot ROM
启动最早的ROM,它可以类比Boot Guard的ACM,
老狼:什么是Boot Guard?电脑启动中的信任链条解析269 赞同 · 44 评论文章编辑
不过它是在CPU的ROM里而不是和BIOS在一起,是一切的信任根。它的代码在这里:
代码很简单(略去不重要内容):
func bl1_entrypoint
....
bl bl1_early_platform_setup
bl bl1_plat_arch_setup
....
bl bl1_main
....
b el3_exit
endfunc bl1_entrypoint
bl1_main()开始就是c程序了,那c运行依靠的堆和栈空间在哪里呢?在CPU内部的SRAM里。SRAM一启动就已经可以访问了,bl1_plat_arch_setup()简单地在其中划分出来一块作为Trusted SRAM给c程序用,而不用像x86在cache里面扣一块出来,简单了很多。
BL1主要目的是建立Trusted SRAM、exception vector、初始化串口console等等。然后找到并验证BL2(验签CSF头),然后跳过去。
BL2:Trusted Boot Firmware
同样运行在EL3上的BL2和BL1一个显著的不同是它在Flash上,作为外置的一个Firmware,它的可信建立在BL1对它的验证上。它也有完整的源代码:
它也会初始化一些关键安全硬件和软件框架。更主要的是,也是我希望大家下载NXP 2160A的分支的重要原因,BL2会初始化很多硬件,而这些硬件初始化在x86中是BIOS完成的(无论是在PEI中还是包在FSP/AGESA中),而在ARM的ATF体系中,很多种CPU是在BL2中完成的。2160A在Plat目录下提供了很多开源的硬件初始化代码,供ATF BL2框架代码调用。比较重要的是bl2_main()
void bl2_main(void)
{
...
bl2_arch_setup();
...
/* initialize boot source */
bl2_plat_preload_setup();
/* Load the subsequent bootloader images. */
next_bl_ep_info = bl2_load_images();
...
bl2_run_next_image(next_bl_ep_info);
}
最重要的两步都在这个函数中完成:初始化硬件和找到BL31。
bl2_plat_preload_setup()中会初始化一堆硬件,包括读取RCW初始化Serdes等,对内存初始化感兴趣的人(比如我)也可以在里面找到初始化DDR4的代码:dram_init(),它在Plat\nxp\drivers\ddr\nxp-ddr下。比较遗憾的是DDR4 PHY的代码是个Binary,不含源码,这里对DDR4的初始化仅仅聚焦设置timing寄存器和功能寄存器,而没有内存的Training过程。
Anyway,x86带内初始化硬件的很多代码ARM ATF体系都包括在BL2中,而不在UEFI代码中,这是和x86 UEFI代码的一个显著区别。部分原因这些代码都要求是Secure的。更加糟糕的是,很多ARM平台,BL1和BL2,甚至后面的BL31都是以二进制的形式提供,让定制显得很困难。BL2能否提供足够的信息和定制化选择给固件厂商和提供足够信息给UEFI代码,考验BL2的具体设计实现。NXP在两个方面都做的不错,不但提供RCW等配置接口,还开源了大部分代码,十分方便。
BL2在初始化硬件后,开始寻找BL3的几个小兄弟:BL31,BL32和BL33。它先找到BL31,并验签它,最后转入BL31。
BL31:EL3 Runtime Firmware
BL31作为EL3最后的安全堡垒,它不像BL1和BL2是一次性运行的。如它的runtime名字暗示的那样,它通过SMC为Non-Secure持续提供设计安全的服务。关于SMC的调用calling convention我们今后再详细介绍,这里只需要知道它的服务主要是通过BL32。它负责找到BL32,验签,并运行BL32。
BL32:OPTee OS + 安全app
BL32实际上是著名的Open Portable Trusted Execution Enveiroment[5] OS,它是由Linaro创立的。它是个很大的话题,我们今后再细聊。现在仅需要知道OPTee OS运行在 S-EL1,而其上的安全APP运行在S-EL0。OPTee OS运行完毕后,返回EL3的BL31,BL31找到BL33,验签它并运行。
BL33: Non-Trusted Firmware
BL33实际上就是UEFI firmware或者uboot,也有实现在这里直接放上Linux Kernel。2160A的实现是UEFI和uboot都支持。我们仅仅来看UEFI的路径。
第一次看到UEFI居然是Non-Trusted,我是有点伤心的。UEFI运行在NS_EL2,程序的入口点在ARM package
edk2/ArmPlatformPkg/PrePi/AArch64/ModuleEntryPoint.S
做了一些简单初始化,就跳到C语言的入口点CEntryPoint( )。其中ArmPlatformInitialize()做了一些硬件初始化,调用了
edk2-platforms/Silicon/NXP/ |
的代码。重要的是PrimaryMain()。
PrimaryMain()有两个实例,2160A NXP选择的是PrePI的版本(edk2/ArmPlatformPkg/PrePi/MainUniCore.c),说明它跳过了SEC的部分,直接进入了PEI的后期阶段,在BL2已经干好了大部分硬件初始化的情况下,这个也是正常选择。PrePI的实例直接调用PrePiMain()(仅保留重要部分)
VOID PrePiMain ( IN UINTN UefiMemoryBase, IN UINTN StacksBase, IN UINT64 StartTimeStamp ) { .... ArchInitialize (); SerialPortInitialize (); InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, NULL, NULL); // Initialize MMU and Memory HOBs (Resource Descriptor HOBs) Status = MemoryPeim (UefiMemoryBase, FixedPcdGet32 (PcdSystemMemoryUefiRegionSize)); BuildCpuHob (ArmGetPhysicalAddressBits (), PcdGet8 (PcdPrePiCpuIoSize)); BuildGuidDataHob (&gEfiFirmwarePerformanceGuid, &Performance, sizeof (Performance)); SetBootMode (ArmPlatformGetBootMode ()); // Initialize Platform HOBs (CpuHob and FvHob) Status = PlatformPeim (); .... Status = DecompressFirstFv (); Status = LoadDxeCoreFromFv (NULL, 0); }
从中我们可以看到,这里几乎就是UEFI PEI阶段DXEIPL的阶段了,后面就是直接DXE阶段。
好了,我们来梳理一下,ATF整个信任链条是逐步建立的:
来源:参考资料2
从作为信任根的BL1开始,一步一步验签CSF头中的签名,最后来到BL33,后面就是OS了。那BL33后面怎么就断了呢?其实后面的验签就是UEFI Secure Boot了
老狼:趣话安全启动:迷思与启示152 赞同 · 24 评论文章编辑
ATF的官网一张图包含了更多的信息:
如果你仅仅对ATF的UEFI启动路径感兴趣,下面这张图可能更加简单明了:
NXP 2160A的开源和良好的文档,让我们可以在一个具体的平台上切片观察ATF的具体实现,建议大家仔细阅读参考资料2和下载代码来看看。
关于ATF启动这里先整个宏观的概念。
这个blog讲的很好,就不重复写了,自己写还写不到这么清晰,图页很漂亮。
原文链接:https://www.cnblogs.com/arnoldlu/p/14175126.html
下图划分成不同EL,分别描述BL1、BL2、BL31、BL32、BL33启动流程,以及PSCI、SP处理流程。
restart–冷启动
reset–热启动
ATF冷启动实现分为5个步骤:
ATF输出BL1、BL2、BL31,提供BL32和BL33接口。
(我想提供的接口就是BL32和BL33的镜像可以是指定的,atf其实是一个启动框架,这其中包含的五个步骤,每个步骤你想要的内容,可以由厂商自己定义。)
启动流程如下:
BL1位于ROM中,在EL3下从reset vector处开始运行。(bootrom就是芯片上电运行的(chip-rom的作用就是跳转到bootrom))
BL1做的工作主要有:
BL2位于SRAM中,运行在Secure EL1主要工作有:
BL31位于SRAM中,EL3模式。除了做架构初始化和平台初始化外,还做了如下工作:
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数网络安全工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上网络安全知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注网络安全获取)
在结束之际,我想重申的是,学习并非如攀登险峻高峰,而是如滴水穿石般的持久累积。尤其当我们步入工作岗位之后,持之以恒的学习变得愈发不易,如同在茫茫大海中独自划舟,稍有松懈便可能被巨浪吞噬。然而,对于我们程序员而言,学习是生存之本,是我们在激烈市场竞争中立于不败之地的关键。一旦停止学习,我们便如同逆水行舟,不进则退,终将被时代的洪流所淘汰。因此,不断汲取新知识,不仅是对自己的提升,更是对自己的一份珍贵投资。让我们不断磨砺自己,与时代共同进步,书写属于我们的辉煌篇章。
需要完整版PDF学习资源私我
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
石般的持久累积。尤其当我们步入工作岗位之后,持之以恒的学习变得愈发不易,如同在茫茫大海中独自划舟,稍有松懈便可能被巨浪吞噬。然而,对于我们程序员而言,学习是生存之本,是我们在激烈市场竞争中立于不败之地的关键。一旦停止学习,我们便如同逆水行舟,不进则退,终将被时代的洪流所淘汰。因此,不断汲取新知识,不仅是对自己的提升,更是对自己的一份珍贵投资。让我们不断磨砺自己,与时代共同进步,书写属于我们的辉煌篇章。**
需要完整版PDF学习资源私我
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-4KGGX1Ft-1712822374668)]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。