当前位置:   article > 正文

用代码yolov5生成改进前后map曲线对比图,map0.5,map0.5:0.95,很简单,小白都能看懂!_yolov5打印map

yolov5打印map

用代码yolov5生成map曲线对比图,map0.5,map0.5:0.95

map曲线对比图

map0.5
0.95
重点csv文件在runs/train/exp中!!

import pandas as pd
import matplotlib.pyplot as plt

# Function to clean column names
def clean_column_names(df):
    df.columns = df.columns.str.strip()
    df.columns = df.columns.str.replace('\s+', '_', regex=True)

#nonoresult.csv表示原始的结果图,csv文件在runs/train/exp中
original_results = pd.read_csv("noresult.csv")
#yesyesresult.csv表示提高后的结果图,csv文件在runs/train/exp中
improved_results = pd.read_csv("yesresult.csv")

# Clean column names
clean_column_names(original_results)
clean_column_names(improved_results)

# Plot mAP@0.5 curves
plt.figure()
#lable属性为曲线名称,自己可以定义
plt.plot(original_results['metrics/mAP_0.5'], label="Original YOLOv5")
plt.plot(improved_results['metrics/mAP_0.5'], label="Improved YOLOv5")
plt.xlabel("Epoch")
plt.ylabel("mAP@0.5")
plt.legend()
plt.title("mAP@0.5 Comparison")
plt.savefig("mAP_0.5_comparison.png")

# Plot mAP@0.5:0.95 curves
plt.figure()
plt.plot(original_results['metrics/mAP_0.5:0.95'], label="Original YOLOv5")
plt.plot(improved_results['metrics/mAP_0.5:0.95'], label="Improved YOLOv5")
plt.xlabel("Epoch")
plt.ylabel("mAP@0.5:0.95")
plt.legend()
#图的标题
plt.title("mAP@0.5:0.95 Comparison")
#图片名称
plt.savefig("mAP_0.5_0.95_comparison.png")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/554396
推荐阅读
相关标签
  

闽ICP备14008679号