当前位置:   article > 正文

Python实战开发及案例分析(16)—— 遗传算法

Python实战开发及案例分析(16)—— 遗传算法

        遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学原理的搜索启发式算法。它们通常用于解决优化和搜索问题,基于“适者生存”的自然选择概念,通过选择、交叉(杂交)、变异操作在一系列迭代中逐步优化解决方案。

遗传算法的主要组成部分:

  1. 种群(Population):解决方案的集合。
  2. 适应度函数(Fitness Function):衡量个体适应环境的好坏。
  3. 选择(Selection):选择适应度好的个体繁殖。
  4. 交叉(Crossover):交换某些个体的部分基因,产生新的个体。
  5. 变异(Mutation):随机改变个体的某些基因,增加种群的多样性。

Python 实现:简单遗传算法

案例分析:最大化一个简单的数学函数

        我们将使用遗传算法来最大化函数

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/559886
推荐阅读
相关标签