赞
踩
运行以下命令来安装依赖项:
pip install -r requirements.txt
https://drive.google.com/file/d/1W6qZeutnqnp3YX9w4iYgR44xsoi_64ff/view?usp=sharing
运行此部分检测ui界面代码
import sys import os from PySide6.QtWidgets import QApplication, QWidget, QFileDialog from PySide6.QtCore import QFile from PySide6.QtUiTools import QUiLoader from PySide6.QtGui import QPixmap, QImage from PySide6.QtCore import QThread, Signal, QDir import cv2 def convertCVImage2QtImage(cv_img): cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB) height, width, channel = cv_img.shape bytesPerLine = 3 * width qimg = QImage(cv_img.data, width, height, bytesPerLine, QImage.Format_RGB888) return QPixmap.fromImage(qimg) class ProcessImage(QThread): signal_show_frame = Signal(object) def __init__(self, fileName): QThread.__init__(self) self.fileName = fileName from detector import Detector self.detector = Detector() def run(self): self.video = cv2.VideoCapture(self.fileName) while True: valid, self.frame = self.video.read() if valid is not True: break self.frame = self.detector.detect(self.frame) self.signal_show_frame.emit(self.frame) cv2.waitKey(30) self.video.release() def stop(self): try: self.video.release() except: pass class show(QThread): signal_show_image = Signal(object) def __init__(self, fileName): QThread.__init__(self) self.fileName = fileName self.video=cv2.VideoCapture(self.fileName) def run(self): while True: valid, self.frame = self.video.read() if valid is not True: break self.signal_show_image.emit(self.frame) cv2.waitKey(30) self.video.release() def stop(self): try: self.video.release() except: pass class MainWindow(QWidget): def __init__(self): super(MainWindow, self).__init__() loader = QUiLoader() self.ui = loader.load("ui/form.ui") self.ui.btn_browse.clicked.connect(self.getFile) self.ui.btn_start.clicked.connect(self.predict) self.ui.show() def getFile(self): self.fileName = QFileDialog.getOpenFileName(self,'Single File','C:\'','*.jpg *.mp4 *.jpeg *.png *.avi')[0] self.ui.txt_address.setText(str(self.fileName)) self.show=show(self.fileName) self.show.signal_show_image.connect(self.show_input) self.show.start() def predict(self): self.process_image = ProcessImage(self.fileName) self.process_image.signal_show_frame.connect(self.show_output) self.process_image.start() def show_input(self, image): pixmap = convertCVImage2QtImage(image) self.ui.lbl_input.setPixmap(pixmap) def show_output(self, image): pixmap = convertCVImage2QtImage(image) self.ui.lbl_output.setPixmap(pixmap) if __name__ == "__main__": app = QApplication(sys.argv) widget = MainWindow() sys.exit(app.exec())
要对图像或视频进行推断,请运行以下命令:
python main.py
https://t.ly/NZWj
总结起来,Yolov5 水果分类识别结合 PyQT 交互式界面可以提供一个方便用户上传图片并获取水果分类结果的工具。Yolov5 算法具有高准确率和实时性,在水果分类任务中表现出色。PyQT 框架提供了丰富的界面组件和布局选项,使得界面开发更加简单。通过 Yolov5 水果分类识别和 PyQT 交互式界面的结合,用户可以轻松地进行水果分类识别,并获得准确的分类结果。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。