赞
踩
facebookresearch SlowFast :https://github.com/facebookresearch/SlowFast
b站视频:https://www.bilibili.com/video/BV1Uh4y1q7R2/
平台:Autodl:https://www.autodl.com/
环境:
PyTorch 1.8.1
Python 3.8(ubuntu18.04)
Cuda 11.1
需要先将这两个权重下载到AI平台的:/root/slowfastFile
model_final_280758.pkl:https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl
SLOWFAST_32x2_R101_50_50.pkl:https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/ava/SLOWFAST_32x2_R101_50_50.pkl
pip install 'git+https://gitee.com/YFwinston/fvcore'
pip install simplejson
conda install av -c conda-forge -y
conda install x264 ffmpeg -c conda-forge -y
pip install -U iopath
pip install psutil
pip install opencv-python
// pip install torchvision
pip install tensorboard
pip install moviepy
pip install pytorchvideo
pip install 'git+https://gitee.com/YFwinston/fairscale'
// pip install -U torch torchvision cython
pip install -U cython
pip install -U 'git+https://gitee.com/YFwinston/fvcore.git' 'git+https://gitee.com/YFwinston/cocoapi.git#subdirectory=PythonAPI'
git clone https://gitee.com/YFwinston/detectron2 detectron2_repo
pip install typing-extensions==4.3.0
pip install -e detectron2_repo
pip install pillow
pip install pyyaml
pip install scipy
pip install pandas
pip install scikit-learn
git clone https://gitee.com/YFwinston/slowfast
export PYTHONPATH=/root/slowfast:$PYTHONPATH
cd slowfast
python setup.py build develop
cd /root
cd /root/slowfast/demo/AVA
cp /root/autodl-nas/slowfast/ava.json ./
cp /root/autodl-nas/slowfast/SLOWFAST_32x2_R101_50_50s.yaml ./
cd /root
cd /root
git clone https://gitee.com/YFwinston/pytorchvideo.git
cd pytorchvideo
pip install -e .
cd /root
然后在/root/slowfast/demo/AVA下面的ava.json写入:
{"bend/bow (at the waist)": 0, "crawl": 1, "crouch/kneel": 2, "dance": 3, "fall down": 4, "get up": 5, "jump/leap": 6, "lie/sleep": 7, "martial art": 8, "run/jog": 9, "sit": 10, "stand": 11, "swim": 12, "walk": 13, "answer phone": 14, "brush teeth": 15, "carry/hold (an object)": 16, "catch (an object)": 17, "chop": 18, "climb (e.g., a mountain)": 19, "clink glass": 20, "close (e.g., a door, a box)": 21, "cook": 22, "cut": 23, "dig": 24, "dress/put on clothing": 25, "drink": 26, "drive (e.g., a car, a truck)": 27, "eat": 28, "enter": 29, "exit": 30, "extract": 31, "fishing": 32, "hit (an object)": 33, "kick (an object)": 34, "lift/pick up": 35, "listen (e.g., to music)": 36, "open (e.g., a window, a car door)": 37, "paint": 38, "play board game": 39, "play musical instrument": 40, "play with pets": 41, "point to (an object)": 42, "press": 43, "pull (an object)": 44, "push (an object)": 45, "put down": 46, "read": 47, "ride (e.g., a bike, a car, a horse)": 48, "row boat": 49, "sail boat": 50, "shoot": 51, "shovel": 52, "smoke": 53, "stir": 54, "take a photo": 55, "text on/look at a cellphone": 56, "throw": 57, "touch (an object)": 58, "turn (e.g., a screwdriver)": 59, "watch (e.g., TV)": 60, "work on a computer": 61, "write": 62, "fight/hit (a person)": 63, "give/serve (an object) to (a person)": 64, "grab (a person)": 65, "hand clap": 66, "hand shake": 67, "hand wave": 68, "hug (a person)": 69, "kick (a person)": 70, "kiss (a person)": 71, "lift (a person)": 72, "listen to (a person)": 73, "play with kids": 74, "push (another person)": 75, "sing to (e.g., self, a person, a group)": 76, "take (an object) from (a person)": 77, "talk to (e.g., self, a person, a group)": 78, "watch (a person)": 79}
然后在/root/slowfast/demo/AVA下面的SLOWFAST_32x2_R101_50_50s.yaml 写入:
TRAIN: ENABLE: False DATASET: ava BATCH_SIZE: 1 EVAL_PERIOD: 1 CHECKPOINT_PERIOD: 1 AUTO_RESUME: True CHECKPOINT_FILE_PATH: /root/autodl-nas/slowfast/SLOWFAST_32x2_R101_50_50.pkl #path to pretrain model CHECKPOINT_TYPE: pytorch DATA: NUM_FRAMES: 16 SAMPLING_RATE: 2 TRAIN_JITTER_SCALES: [256, 320] TRAIN_CROP_SIZE: 224 TEST_CROP_SIZE: 256 INPUT_CHANNEL_NUM: [3, 3] DETECTION: ENABLE: True ALIGNED: False AVA: BGR: False DETECTION_SCORE_THRESH: 0.8 TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"] SLOWFAST: ALPHA: 4 BETA_INV: 8 FUSION_CONV_CHANNEL_RATIO: 2 FUSION_KERNEL_SZ: 5 RESNET: ZERO_INIT_FINAL_BN: True WIDTH_PER_GROUP: 64 NUM_GROUPS: 1 DEPTH: 101 TRANS_FUNC: bottleneck_transform STRIDE_1X1: False NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]] SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]] SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]] NONLOCAL: LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]] GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]] INSTANTIATION: dot_product POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]] BN: USE_PRECISE_STATS: False NUM_BATCHES_PRECISE: 200 SOLVER: MOMENTUM: 0.9 WEIGHT_DECAY: 1e-7 OPTIMIZING_METHOD: sgd MODEL: NUM_CLASSES: 80 ARCH: slowfast MODEL_NAME: SlowFast LOSS_FUNC: bce DROPOUT_RATE: 0.5 HEAD_ACT: sigmoid TEST: ENABLE: False DATASET: ava BATCH_SIZE: 1 DATA_LOADER: NUM_WORKERS: 1 PIN_MEMORY: True NUM_GPUS: 1 NUM_SHARDS: 1 RNG_SEED: 0 OUTPUT_DIR: . #TENSORBOARD: # MODEL_VIS: # TOPK: 2 DEMO: ENABLE: True LABEL_FILE_PATH: "demo/AVA/ava.json" # Add local label file path here. INPUT_VIDEO: "/root/autodl-nas/slowfast/1.mp4" OUTPUT_FILE: "/root/autodl-nas/slowfast/1_1.mp4" DETECTRON2_CFG: "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml" DETECTRON2_WEIGHTS: "/root/autodl-nas/slowfast/model_final_280758.pkl"
在/home/slowfast/demo/中传入一个视频:1.mp4
执行:
cd /root/slowfast/
python tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50s.yaml
This maybe due to another process holding this lock file. If you are sure no other Matplotlib process is running, remove this file and try again.
pip install --upgrade matplotlib
ModuleNotFoundError: No module named ‘torch._six’
vim /root/slowfast/slowfast/datasets/multigrid_helper.py
if TORCH_MAJOR >= 1 and TORCH_MINOR >= 8:
_int_classes = int
else:
int_classes = int
_int_classes = int
#from torch._six import int_classes as _int_classes
报错:
ERROR: Command errored out with exit status 1: command: /root/miniconda3/bin/python -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'/root/detectron2_repo/setup.py'"'"'; __file__='"'"'/root/detectron2_repo/setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools import setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-pip-egg-info-yoefyzdp cwd: /root/detectron2_repo/ Complete output (13 lines): Traceback (most recent call last): File "<string>", line 1, in <module> File "/root/detectron2_repo/setup.py", line 10, in <module> import torch File "/root/miniconda3/lib/python3.8/site-packages/torch/__init__.py", line 1429, in <module> from torch import optim as optim File "/root/miniconda3/lib/python3.8/site-packages/torch/optim/__init__.py", line 8, in <module> from .adadelta import Adadelta File "/root/miniconda3/lib/python3.8/site-packages/torch/optim/adadelta.py", line 4, in <module> from .optimizer import (Optimizer, _use_grad_for_differentiable, _default_to_fused_or_foreach, File "/root/miniconda3/lib/python3.8/site-packages/torch/optim/optimizer.py", line 23, in <module> from typing_extensions import ParamSpec, Self, TypeAlias ImportError: cannot import name 'Self' from 'typing_extensions' (/root/miniconda3/lib/python3.8/site-packages/typing_extensions.py) ---------------------------------------- WARNING: Discarding file:///root/detectron2_repo. Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.
pip install typing-extensions==4.3.0
Traceback (most recent call last):
File "tools/run_net.py", line 6, in <module>
from slowfast.utils.misc import launch_job
File "/root/slowfast/slowfast/utils/misc.py", line 19, in <module>
import slowfast.utils.logging as logging
File "/root/slowfast/slowfast/utils/logging.py", line 15, in <module>
import slowfast.utils.distributed as du
File "/root/slowfast/slowfast/utils/distributed.py", line 12, in <module>
from pytorchvideo.layers.distributed import ( # noqa
ImportError: cannot import name 'cat_all_gather' from 'pytorchvideo.layers.distributed' (/root/miniconda3/lib/python3.8/site-packages/pytorchvideo/layers/distributed.py)
cd /root
git clone https://gitee.com/YFwinston/pytorchvideo.git
cd pytorchvideo
pip install -e .
cd /root
https://github.com/Whiffe/SCB-dataset/tree/main/yolo2ava
python yolo2ava.py --yolo_path /root/5k_HRW_yolo_Dataset --ava_path /root/autodl-tmp/SCB-ava-Dataset4
执行后的目录结构
SCB-ava-Dataset4
├── annotations
│ ├── ava_action_list_v2.2_for_activitynet_2019.pbtxt
│ ├── ava_included_timestamps_v2.2.txt
│ ├── ava_test_excluded_timestamps_v2.2.csv
│ ├── ava_train_excluded_timestamps_v2.2.csv
│ ├── ava_train_v2.2.csv
│ ├── ava_val_excluded_timestamps_v2.2.csv
│ ├── ava_val_v2.2.csv
│ └── person_box_67091280_iou90
│ ├── ava_detection_train_boxes_and_labels_include_negative_v2.2.csv
│ └── ava_detection_val_boxes_and_labels.csv
├── frame_lists
│ ├── train.csv
│ └── val.csv
└── frames
├── 0001001
│ ├── 0001001_000001.png
│ ├── 0001001_000002.png
│ ├── …
│
├── 0001002
│ ├── 0001002_000001.png
│ ├── 0001002_000002.png
│ ├── …
可以用下面的命令查看当前路径的文件占了多少空间
du -sh
configs/AVA/c2/SLOWFAST_32x2_R101_50_50s.yaml
TRAIN: ENABLE: True DATASET: ava BATCH_SIZE: 4 EVAL_PERIOD: 1 CHECKPOINT_PERIOD: 1 AUTO_RESUME: True CHECKPOINT_FILE_PATH: /root/autodl-nas/slowfast/SLOWFAST_32x2_R101_50_50.pkl CHECKPOINT_TYPE: pytorch DATA: NUM_FRAMES: 32 SAMPLING_RATE: 2 TRAIN_JITTER_SCALES: [256, 320] TRAIN_CROP_SIZE: 224 TEST_CROP_SIZE: 256 INPUT_CHANNEL_NUM: [3, 3] PATH_TO_DATA_DIR: '/root/autodl-tmp/SCB-ava-Dataset4' DETECTION: ENABLE: True ALIGNED: False AVA: FRAME_DIR: '/root/autodl-tmp/SCB-ava-Dataset4/frames' FRAME_LIST_DIR: '/root/autodl-tmp/SCB-ava-Dataset4/frame_lists' ANNOTATION_DIR: '/root/autodl-tmp/SCB-ava-Dataset4/annotations' DETECTION_SCORE_THRESH: 0.8 TRAIN_PREDICT_BOX_LISTS: [ "ava_train_v2.2.csv", "person_box_67091280_iou90/ava_detection_train_boxes_and_labels_include_negative_v2.2.csv", ] TEST_PREDICT_BOX_LISTS: [ "person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"] FULL_TEST_ON_VAL: True SLOWFAST: ALPHA: 4 BETA_INV: 8 FUSION_CONV_CHANNEL_RATIO: 2 FUSION_KERNEL_SZ: 5 RESNET: ZERO_INIT_FINAL_BN: True WIDTH_PER_GROUP: 64 NUM_GROUPS: 1 DEPTH: 101 TRANS_FUNC: bottleneck_transform STRIDE_1X1: False NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]] SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]] SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]] NONLOCAL: LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]] GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]] INSTANTIATION: dot_product POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]] BN: USE_PRECISE_STATS: False NUM_BATCHES_PRECISE: 200 SOLVER: MOMENTUM: 0.9 WEIGHT_DECAY: 1e-7 OPTIMIZING_METHOD: sgd MODEL: NUM_CLASSES: 80 ARCH: slowfast MODEL_NAME: SlowFast LOSS_FUNC: bce DROPOUT_RATE: 0.5 HEAD_ACT: sigmoid TEST: ENABLE: True DATASET: ava BATCH_SIZE: 8 DATA_LOADER: NUM_WORKERS: 2 PIN_MEMORY: True NUM_GPUS: 1 NUM_SHARDS: 1 RNG_SEED: 0 OUTPUT_DIR: '/root/autodl-tmp/'
SCB-ava-Dataset4/annotations/ava_action_list_v2.2_for_activitynet_2019.pbtxt
item {
name: "hand-raising"
id: 1
}
item {
name: "reading"
id: 2
}
item {
name: "writing"
id: 3
}
SCB-ava-Dataset4/annotations/ava_included_timestamps_v2.2.txt
0002
空
SCB-ava-Dataset4/annotations/ava_test_excluded_timestamps_v2.2.csv
SCB-ava-Dataset4/annotations/ava_train_excluded_timestamps_v2.2.csv
ava默认是从902帧开始,我们可以从第1帧开始,不过需要修改代码,位置在slowfast/slowfast/datasets/ava_helper.py,
AVA_VALID_FRAMES = range(2, 3)
python tools/run_net.py \
--cfg configs/AVA/c2/SLOWFAST_32x2_R101_50_50s.yaml
报错:
Traceback (most recent call last):
File “tools/run_net.py”, line 52, in
main()
File “tools/run_net.py”, line 27, in main
launch_job(cfg=cfg, init_method=args.init_method, func=train)
File “/root/slowfast/slowfast/utils/misc.py”, line 430, in launch_job
func(cfg=cfg)
File “/root/slowfast/tools/train_net.py”, line 681, in train
train_epoch(
File “/root/slowfast/tools/train_net.py”, line 276, in train_epoch
del inputs
UnboundLocalError: local variable ‘inputs’ referenced before assignment
解决:
https://github.com/facebookresearch/SlowFast/issues/547
更改batch_size的大小,报错是因为batch_size大于视频数量
报错:
Traceback (most recent call last):
File “tools/run_net.py”, line 52, in
main()
File “tools/run_net.py”, line 27, in main
launch_job(cfg=cfg, init_method=args.init_method, func=train)
File “/root/slowfast/slowfast/utils/misc.py”, line 430, in launch_job
func(cfg=cfg)
File “/root/slowfast/tools/train_net.py”, line 681, in train
train_epoch(
File “/root/slowfast/tools/train_net.py”, line 110, in train_epoch
optim.set_lr(optimizer, lr)
File “/root/slowfast/slowfast/models/optimizer.py”, line 267, in set_lr
param_group[“lr”] = new_lr * param_group[“layer_decay”]
KeyError: ‘layer_decay’
解决:
https://github.com/facebookresearch/SlowFast/issues/654
slowfast/slowfast/models/optimizer.py
def set_lr(optimizer, new_lr):
"""
Sets the optimizer lr to the specified value.
Args:
optimizer (optim): the optimizer using to optimize the current network.
new_lr (float): the new learning rate to set.
"""
for param_group in optimizer.param_groups:
try:
param_group["lr"] = new_lr * param_group["layer_decay"]
except:
param_group["lr"] = new_lr * 1.0
错误:
/root/slowfast/ava_evaluation/metrics.py:41: FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar. or labels.dtype != np.bool Traceback (most recent call last): File "tools/run_net.py", line 52, in <module> main() File "tools/run_net.py", line 27, in main launch_job(cfg=cfg, init_method=args.init_method, func=train) File "/root/slowfast/slowfast/utils/misc.py", line 430, in launch_job func(cfg=cfg) File "/root/slowfast/tools/train_net.py", line 748, in train eval_epoch( File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/root/slowfast/tools/train_net.py", line 420, in eval_epoch val_meter.log_epoch_stats(cur_epoch) File "/root/slowfast/slowfast/utils/meters.py", line 235, in log_epoch_stats self.finalize_metrics(log=False) File "/root/slowfast/slowfast/utils/meters.py", line 208, in finalize_metrics self.full_map = evaluate_ava( File "/root/slowfast/slowfast/utils/ava_eval_helper.py", line 162, in evaluate_ava results = run_evaluation(categories, groundtruth, detections, excluded_keys) File "/root/slowfast/slowfast/utils/ava_eval_helper.py", line 238, in run_evaluation metrics = pascal_evaluator.evaluate() File "/root/slowfast/ava_evaluation/object_detection_evaluation.py", line 307, in evaluate ) = self._evaluation.evaluate() File "/root/slowfast/ava_evaluation/object_detection_evaluation.py", line 799, in evaluate precision, recall = metrics.compute_precision_recall( File "/root/slowfast/ava_evaluation/metrics.py", line 41, in compute_precision_recall or labels.dtype != np.bool File "/root/miniconda3/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__ raise AttributeError(__former_attrs__[attr]) AttributeError: module 'numpy' has no attribute 'bool'. `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
成功解决AttributeError: module ‘numpy‘ has no attribute ‘bool‘.
pip uninstall numpy
pip install numpy==1.23.2
报错:
Traceback (most recent call last): File "tools/run_net.py", line 52, in <module> main() File "tools/run_net.py", line 27, in main launch_job(cfg=cfg, init_method=args.init_method, func=train) File "/root/slowfast/slowfast/utils/misc.py", line 430, in launch_job func(cfg=cfg) File "/root/slowfast/tools/train_net.py", line 748, in train eval_epoch( File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/root/slowfast/tools/train_net.py", line 420, in eval_epoch val_meter.log_epoch_stats(cur_epoch) File "/root/slowfast/slowfast/utils/meters.py", line 235, in log_epoch_stats self.finalize_metrics(log=False) File "/root/slowfast/slowfast/utils/meters.py", line 208, in finalize_metrics self.full_map = evaluate_ava( File "/root/slowfast/slowfast/utils/ava_eval_helper.py", line 162, in evaluate_ava results = run_evaluation(categories, groundtruth, detections, excluded_keys) File "/root/slowfast/slowfast/utils/ava_eval_helper.py", line 221, in run_evaluation pascal_evaluator.add_single_detected_image_info( File "/root/slowfast/ava_evaluation/object_detection_evaluation.py", line 275, in add_single_detected_image_info self._evaluation.add_single_detected_image_info( File "/root/slowfast/ava_evaluation/object_detection_evaluation.py", line 710, in add_single_detected_image_info ) = self.per_image_eval.compute_object_detection_metrics( File "/root/slowfast/ava_evaluation/per_image_evaluation.py", line 114, in compute_object_detection_metrics scores, tp_fp_labels = self._compute_tp_fp( File "/root/slowfast/ava_evaluation/per_image_evaluation.py", line 210, in _compute_tp_fp scores, tp_fp_labels = self._compute_tp_fp_for_single_class( File "/root/slowfast/ava_evaluation/per_image_evaluation.py", line 310, in _compute_tp_fp_for_single_class ) = self._get_overlaps_and_scores_box_mode( File "/root/slowfast/ava_evaluation/per_image_evaluation.py", line 253, in _get_overlaps_and_scores_box_mode gt_non_group_of_boxlist = np_box_list.BoxList( File "/root/slowfast/ava_evaluation/np_box_list.py", line 58, in __init__ raise ValueError( ValueError: Invalid box data. data must be a numpy array of N*[y_min, x_min, y_max, x_max]
Traceback (most recent call last): File "tools/run_net.py", line 52, in <module> main() File "tools/run_net.py", line 27, in main launch_job(cfg=cfg, init_method=args.init_method, func=train) File "/data/SCB/slowfast/slowfast/utils/misc.py", line 430, in launch_job func(cfg=cfg) File "/data/SCB/slowfast/tools/train_net.py", line 681, in train train_epoch( File "/data/SCB/slowfast/tools/train_net.py", line 176, in train_epoch scaler.step(optimizer) File "/root/miniconda3/envs/slowfast/lib/python3.8/site-packages/torch/cuda/amp/grad_scaler.py", line 315, in step return optimizer.step(*args, **kwargs) File "/root/miniconda3/envs/slowfast/lib/python3.8/site-packages/torch/optim/optimizer.py", line 280, in wrapper out = func(*args, **kwargs) File "/root/miniconda3/envs/slowfast/lib/python3.8/site-packages/torch/optim/optimizer.py", line 33, in _use_grad ret = func(self, *args, **kwargs) File "/root/miniconda3/envs/slowfast/lib/python3.8/site-packages/torch/optim/sgd.py", line 76, in step sgd(params_with_grad, File "/root/miniconda3/envs/slowfast/lib/python3.8/site-packages/torch/optim/sgd.py", line 222, in sgd func(params, File "/root/miniconda3/envs/slowfast/lib/python3.8/site-packages/torch/optim/sgd.py", line 306, in _multi_tensor_sgd torch._foreach_add_(bufs, device_grads, alpha=1 - dampening) RuntimeError: The size of tensor a (80) must match the size of tensor b (3) at non-singleton dimension 0
解决:
这里报错的原因是预训练模型的原因,不应该加载预训练模型,注释TRAIN.CHECKPOINT_FILE_PATH即可
slowfast/configs/AVA/c2/SLOWFAST_32x2_R101_50_50s2.yaml
TRAIN: ENABLE: False DATASET: ava BATCH_SIZE: 4 EVAL_PERIOD: 1 CHECKPOINT_PERIOD: 1 AUTO_RESUME: True CHECKPOINT_FILE_PATH: /root/autodl-nas/slowfast/SLOWFAST_32x2_R101_50_50.pkl CHECKPOINT_TYPE: pytorch DATA: NUM_FRAMES: 32 SAMPLING_RATE: 2 TRAIN_JITTER_SCALES: [256, 320] TRAIN_CROP_SIZE: 224 TEST_CROP_SIZE: 256 INPUT_CHANNEL_NUM: [3, 3] PATH_TO_DATA_DIR: '/root/autodl-tmp/SCB-ava-Dataset4' DETECTION: ENABLE: True ALIGNED: False AVA: FRAME_DIR: '/root/autodl-tmp/SCB-ava-Dataset4/frames' FRAME_LIST_DIR: '/root/autodl-tmp/SCB-ava-Dataset4/frame_lists' ANNOTATION_DIR: '/root/autodl-tmp/SCB-ava-Dataset4/annotations' DETECTION_SCORE_THRESH: 0.8 TRAIN_PREDICT_BOX_LISTS: [ "ava_train_v2.2.csv", "person_box_67091280_iou90/ava_detection_train_boxes_and_labels_include_negative_v2.2.csv", ] TEST_PREDICT_BOX_LISTS: [ "person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"] FULL_TEST_ON_VAL: True SLOWFAST: ALPHA: 4 BETA_INV: 8 FUSION_CONV_CHANNEL_RATIO: 2 FUSION_KERNEL_SZ: 5 RESNET: ZERO_INIT_FINAL_BN: True WIDTH_PER_GROUP: 64 NUM_GROUPS: 1 DEPTH: 101 TRANS_FUNC: bottleneck_transform STRIDE_1X1: False NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]] SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]] SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]] NONLOCAL: LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]] GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]] INSTANTIATION: dot_product POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]] BN: USE_PRECISE_STATS: False NUM_BATCHES_PRECISE: 200 SOLVER: MOMENTUM: 0.9 WEIGHT_DECAY: 1e-7 OPTIMIZING_METHOD: sgd MODEL: NUM_CLASSES: 80 ARCH: slowfast MODEL_NAME: SlowFast LOSS_FUNC: bce DROPOUT_RATE: 0.5 HEAD_ACT: sigmoid TEST: ENABLE: True DATASET: ava BATCH_SIZE: 1 CHECKPOINT_FILE_PATH: /root/autodl-tmp/slowfast_train/checkpoints/checkpoint_epoch_00034.pyth DATA_LOADER: NUM_WORKERS: 2 PIN_MEMORY: True NUM_GPUS: 1 NUM_SHARDS: 1 RNG_SEED: 0 OUTPUT_DIR: '/root/autodl-tmp/'
python tools/run_net.py \
--cfg configs/AVA/c2/SLOWFAST_32x2_R101_50_50s2.yaml \
错误:
Traceback (most recent call last): File "tools/run_net.py", line 52, in <module> main() File "tools/run_net.py", line 37, in main launch_job(cfg=cfg, init_method=args.init_method, func=test) File "/root/slowfast/slowfast/utils/misc.py", line 430, in launch_job func(cfg=cfg) File "/root/slowfast/tools/test_net.py", line 252, in test test_meter = perform_test(test_loader, model, test_meter, cfg, writer) File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/root/slowfast/tools/test_net.py", line 129, in perform_test test_meter.iter_toc() File "/root/slowfast/slowfast/utils/meters.py", line 159, in iter_toc self.iter_timer.pause() File "/root/miniconda3/lib/python3.8/site-packages/fvcore/common/timer.py", line 30, in pause raise ValueError("Trying to pause a Timer that is already paused!") ValueError: Trying to pause a Timer that is already paused!
解决:
https://github.com/facebookresearch/SlowFast/issues/599#ref-issue-1441689338
https://github.com/facebookresearch/SlowFast/issues/623
修改test_net.py中的内容,加两组try except
if cfg.NUM_GPUS > 1: preds, labels, video_idx = du.all_gather([preds, labels, video_idx]) if cfg.NUM_GPUS: preds = preds.cpu() labels = labels.cpu() video_idx = video_idx.cpu() try: test_meter.iter_toc() except: pass if not cfg.VIS_MASK.ENABLE: # Update and log stats. test_meter.update_stats( preds.detach(), labels.detach(), video_idx.detach() ) try: test_meter.log_iter_stats(cur_iter) except: test_meter.log_iter_stats(None,cur_iter) test_meter.iter_tic()
报错:
Traceback (most recent call last): File "tools/run_net.py", line 52, in <module> main() File "tools/run_net.py", line 37, in main launch_job(cfg=cfg, init_method=args.init_method, func=test) File "/root/slowfast/slowfast/utils/misc.py", line 430, in launch_job func(cfg=cfg) File "/root/slowfast/tools/test_net.py", line 257, in test test_meter = perform_test(test_loader, model, test_meter, cfg, writer) File "/root/miniconda3/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/root/slowfast/tools/test_net.py", line 166, in perform_test test_meter.finalize_metrics() File "/root/slowfast/slowfast/utils/meters.py", line 200, in finalize_metrics all_ori_boxes = torch.cat(self.all_ori_boxes, dim=0) RuntimeError: Sizes of tensors must match except in dimension 0. Got 5 and 80 in dimension 1 (The offending index is 1)
这个错误是在运行PyTorch代码时出现的,它指的是你在进行张量(tensor)操作时,试图将两个维度(dimension)大小不匹配的张量进行相加或其他操作。
具体来说,错误消息"Sizes of tensors must match except in dimension 0. Got 5 and 80 in dimension 1 (The offending index is 1)"告诉我们,你正在试图将一个在第一个维度大小为5的张量和第一个维度大小为80的张量进行相加。这是不允许的,因为在除第一个维度之外的所有维度上,两个输入张量的大小必须完全相同。
为了解决这个问题,你需要确保你正在操作的两个张量在所有维度上的大小都相同,或者至少在需要进行操作的维度上相同。
例如,如果你有两个大小为(5, 80)和(80, 80)的张量,你不能直接将它们相加,因为它们的第二个维度大小不匹配。你需要确保它们的大小相同,比如通过调整你的数据或者改变你的操作。
如果你能提供更多关于你遇到这个错误的上下文信息(比如你的代码片段和你的数据),我可能能提供更具体的建议。
Traceback (most recent call last): File "tools/run_net.py", line 52, in <module> main() File "tools/run_net.py", line 37, in main launch_job(cfg=cfg, init_method=args.init_method, func=test) File "/data/SCB/slowfast/slowfast/utils/misc.py", line 430, in launch_job func(cfg=cfg) File "/data/SCB/slowfast/tools/test_net.py", line 262, in test test_meter = perform_test(test_loader, model, test_meter, cfg, writer) File "/root/miniconda3/envs/slowfast/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/data/SCB/slowfast/tools/test_net.py", line 171, in perform_test test_meter.finalize_metrics() File "/data/SCB/slowfast/slowfast/utils/meters.py", line 204, in finalize_metrics all_ori_boxes = torch.cat(self.all_ori_boxes, dim=0) RuntimeError: Sizes of tensors must match except in dimension 0. Expected size 5 but got size 3 for tensor number 1 in the list. 解决:
报错的原因如下:
维度不匹配,
下面内容导致了维度不匹配(test_net.py)
if not cfg.VIS_MASK.ENABLE:
# Update and log stats.
# print("labels.detach():",labels.detach())
test_meter.update_stats(
preds.detach(), labels.detach(), video_idx.detach()
需要添加配置文件SLOWFAST_32x2_R101_50_50s.yaml中添加如下东西
VIS_MASK:
ENABLE: True
slowfast/demo/AVA/SLOWFAST_32x2_R101_50_50s2.yaml
TRAIN: ENABLE: False DATASET: ava BATCH_SIZE: 1 EVAL_PERIOD: 1 CHECKPOINT_PERIOD: 1 AUTO_RESUME: True CHECKPOINT_FILE_PATH: /root/slowfast_train/checkpoints/checkpoint_epoch_00034.pyth #path to pretrain model CHECKPOINT_TYPE: pytorch DATA: NUM_FRAMES: 16 SAMPLING_RATE: 2 TRAIN_JITTER_SCALES: [256, 320] TRAIN_CROP_SIZE: 224 TEST_CROP_SIZE: 256 INPUT_CHANNEL_NUM: [3, 3] DETECTION: ENABLE: True ALIGNED: False AVA: BGR: False DETECTION_SCORE_THRESH: 0.8 TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"] SLOWFAST: ALPHA: 4 BETA_INV: 8 FUSION_CONV_CHANNEL_RATIO: 2 FUSION_KERNEL_SZ: 5 RESNET: ZERO_INIT_FINAL_BN: True WIDTH_PER_GROUP: 64 NUM_GROUPS: 1 DEPTH: 101 TRANS_FUNC: bottleneck_transform STRIDE_1X1: False NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]] SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]] SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]] NONLOCAL: LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]] GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]] INSTANTIATION: dot_product POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]] BN: USE_PRECISE_STATS: False NUM_BATCHES_PRECISE: 200 SOLVER: MOMENTUM: 0.9 WEIGHT_DECAY: 1e-7 OPTIMIZING_METHOD: sgd MODEL: NUM_CLASSES: 80 ARCH: slowfast MODEL_NAME: SlowFast LOSS_FUNC: bce DROPOUT_RATE: 0.5 HEAD_ACT: sigmoid TEST: ENABLE: False DATASET: ava BATCH_SIZE: 1 DATA_LOADER: NUM_WORKERS: 1 PIN_MEMORY: True NUM_GPUS: 1 NUM_SHARDS: 1 RNG_SEED: 0 OUTPUT_DIR: . #TENSORBOARD: # MODEL_VIS: # TOPK: 2 DEMO: ENABLE: True LABEL_FILE_PATH: "demo/AVA/student_behaviors.json" # Add local label file path here. INPUT_VIDEO: "/root/autodl-tmp/0_0_0.mp4" OUTPUT_FILE: "/root/autodl-tmp/0_1_1.mp4" DETECTRON2_CFG: "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml" DETECTRON2_WEIGHTS: "/root/autodl-nas/slowfast/model_final_280758.pkl"
slowfast/demo/AVA/student_behaviors.json
{"hand-raising": 0, "reading": 1, "writing": 2}
cd /root/slowfast/
python tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50s2.yaml
torch版本:
2.0.0+cu117
torchvision版本
0.15.1+cu117
pip install 'git+https://gitee.com/YFwinston/fvcore'
pip install simplejson
conda install av -c conda-forge -y
conda install x264 ffmpeg -c conda-forge -y
pip install -U iopath
pip install psutil
pip install opencv-python
// pip install torchvision
pip install tensorboard
pip install moviepy
pip install pytorchvideo
pip install 'git+https://gitee.com/YFwinston/fairscale'
cd /data/SCB/
git clone https://gitee.com/YFwinston/pytorchvideo.git
cd pytorchvideo
pip install -e .
/data/SCB/
// pip install -U torch torchvision cython
// pip install -U cython
pip install cython
pip install -U 'git+https://gitee.com/YFwinston/fvcore.git' 'git+https://gitee.com/YFwinston/cocoapi.git#subdirectory=PythonAPI'
git clone https://gitee.com/YFwinston/detectron2 detectron2_repo
pip install typing-extensions==4.3.0
pip install -e detectron2_repo
pip install pillow
pip install pyyaml
pip install scipy
pip install pandas
pip install scikit-learn
git clone https://gitee.com/YFwinston/slowfast
export PYTHONPATH=/data/SCB/slowfast:$PYTHONPATH
cd slowfast
python setup.py build develop
cd ..
cd /data/SCB/slowfast/demo/AVA
vim ava.json
{"bend/bow (at the waist)": 0, "crawl": 1, "crouch/kneel": 2, "dance": 3, "fall down": 4, "get up": 5, "jump/leap": 6, "lie/sleep": 7, "martial art": 8, "run/jog": 9, "sit": 10, "stand": 11, "swim": 12, "walk": 13, "answer phone": 14, "brush teeth": 15, "carry/hold (an object)": 16, "catch (an object)": 17, "chop": 18, "climb (e.g., a mountain)": 19, "clink glass": 20, "close (e.g., a door, a box)": 21, "cook": 22, "cut": 23, "dig": 24, "dress/put on clothing": 25, "drink": 26, "drive (e.g., a car, a truck)": 27, "eat": 28, "enter": 29, "exit": 30, "extract": 31, "fishing": 32, "hit (an object)": 33, "kick (an object)": 34, "lift/pick up": 35, "listen (e.g., to music)": 36, "open (e.g., a window, a car door)": 37, "paint": 38, "play board game": 39, "play musical instrument": 40, "play with pets": 41, "point to (an object)": 42, "press": 43, "pull (an object)": 44, "push (an object)": 45, "put down": 46, "read": 47, "ride (e.g., a bike, a car, a horse)": 48, "row boat": 49, "sail boat": 50, "shoot": 51, "shovel": 52, "smoke": 53, "stir": 54, "take a photo": 55, "text on/look at a cellphone": 56, "throw": 57, "touch (an object)": 58, "turn (e.g., a screwdriver)": 59, "watch (e.g., TV)": 60, "work on a computer": 61, "write": 62, "fight/hit (a person)": 63, "give/serve (an object) to (a person)": 64, "grab (a person)": 65, "hand clap": 66, "hand shake": 67, "hand wave": 68, "hug (a person)": 69, "kick (a person)": 70, "kiss (a person)": 71, "lift (a person)": 72, "listen to (a person)": 73, "play with kids": 74, "push (another person)": 75, "sing to (e.g., self, a person, a group)": 76, "take (an object) from (a person)": 77, "talk to (e.g., self, a person, a group)": 78, "watch (a person)": 79}
cd /data/SCB/slowfast/demo/AVA
vim SLOWFAST_32x2_R101_50_50s.yaml
TRAIN: ENABLE: False DATASET: ava BATCH_SIZE: 1 EVAL_PERIOD: 1 CHECKPOINT_PERIOD: 1 AUTO_RESUME: True CHECKPOINT_FILE_PATH: /data/SCB/slowfast/mywork/SLOWFAST_32x2_R101_50_50.pkl #path to pretrain model CHECKPOINT_TYPE: pytorch DATA: NUM_FRAMES: 16 SAMPLING_RATE: 2 TRAIN_JITTER_SCALES: [256, 320] TRAIN_CROP_SIZE: 224 TEST_CROP_SIZE: 256 INPUT_CHANNEL_NUM: [3, 3] DETECTION: ENABLE: True ALIGNED: False AVA: BGR: False DETECTION_SCORE_THRESH: 0.8 TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"] SLOWFAST: ALPHA: 4 BETA_INV: 8 FUSION_CONV_CHANNEL_RATIO: 2 FUSION_KERNEL_SZ: 5 RESNET: ZERO_INIT_FINAL_BN: True WIDTH_PER_GROUP: 64 NUM_GROUPS: 1 DEPTH: 101 TRANS_FUNC: bottleneck_transform STRIDE_1X1: False NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]] SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]] SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]] NONLOCAL: LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]] GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]] INSTANTIATION: dot_product POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]] BN: USE_PRECISE_STATS: False NUM_BATCHES_PRECISE: 200 SOLVER: MOMENTUM: 0.9 WEIGHT_DECAY: 1e-7 OPTIMIZING_METHOD: sgd MODEL: NUM_CLASSES: 80 ARCH: slowfast MODEL_NAME: SlowFast LOSS_FUNC: bce DROPOUT_RATE: 0.5 HEAD_ACT: sigmoid TEST: ENABLE: False DATASET: ava BATCH_SIZE: 1 DATA_LOADER: NUM_WORKERS: 1 PIN_MEMORY: True NUM_GPUS: 1 NUM_SHARDS: 1 RNG_SEED: 0 OUTPUT_DIR: . #TENSORBOARD: # MODEL_VIS: # TOPK: 2 DEMO: ENABLE: True LABEL_FILE_PATH: "demo/AVA/ava.json" # Add local label file path here. INPUT_VIDEO: "/data/SCB/slowfast/mywork/1.mp4" OUTPUT_FILE: "/data/SCB/slowfast/mywork/1_1.mp4" DETECTRON2_CFG: "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml" DETECTRON2_WEIGHTS: "/data/SCB/slowfast/mywork/model_final_280758.pkl"
在/data/SCB/slowfast/mywork/中传入一个视频:1.mp4
执行:
cd /data/SCB/slowfast/
python tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50s.yaml
slowfast/configs/AVA/c2/SLOWFAST_32x2_R101_50_50s.yaml
TRAIN: ENABLE: True DATASET: ava BATCH_SIZE: 8 EVAL_PERIOD: 1 CHECKPOINT_PERIOD: 1 AUTO_RESUME: True # CHECKPOINT_FILE_PATH: /data/SCB/slowfast/mywork/SLOWFAST_32x2_R101_50_50.pkl CHECKPOINT_TYPE: pytorch DATA: NUM_FRAMES: 32 SAMPLING_RATE: 2 TRAIN_JITTER_SCALES: [256, 320] TRAIN_CROP_SIZE: 224 TEST_CROP_SIZE: 256 INPUT_CHANNEL_NUM: [3, 3] PATH_TO_DATA_DIR: '/data/SCB/Dataset/SCB-ava-Dataset4' DETECTION: ENABLE: True # ENABLE: False ALIGNED: False VIS_MASK: ENABLE: True AVA: FRAME_DIR: '/data/SCB/Dataset/SCB-ava-Dataset4/frames' FRAME_LIST_DIR: '/data/SCB/Dataset/SCB-ava-Dataset4/frame_lists' ANNOTATION_DIR: '/data/SCB/Dataset/SCB-ava-Dataset4/annotations' DETECTION_SCORE_THRESH: 0.8 TRAIN_PREDICT_BOX_LISTS: [ "ava_train_v2.2.csv", "person_box_67091280_iou90/ava_detection_train_boxes_and_labels_include_negative_v2.2.csv", ] TEST_PREDICT_BOX_LISTS: [ "person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"] FULL_TEST_ON_VAL: True SLOWFAST: ALPHA: 4 BETA_INV: 8 FUSION_CONV_CHANNEL_RATIO: 2 FUSION_KERNEL_SZ: 5 RESNET: ZERO_INIT_FINAL_BN: True WIDTH_PER_GROUP: 64 NUM_GROUPS: 1 DEPTH: 101 TRANS_FUNC: bottleneck_transform STRIDE_1X1: False NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]] SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]] SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]] NONLOCAL: LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]] GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]] INSTANTIATION: dot_product POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]] BN: USE_PRECISE_STATS: False NUM_BATCHES_PRECISE: 200 SOLVER: BASE_LR: 0.01 MOMENTUM: 0.9 WEIGHT_DECAY: 1e-7 OPTIMIZING_METHOD: sgd MAX_EPOCH: 50 MODEL: # NUM_CLASSES: 80 NUM_CLASSES: 3 ARCH: slowfast MODEL_NAME: SlowFast # LOSS_FUNC: bce LOSS_FUNC: cross_entropy # LOSS_FUNC: F_BCE DROPOUT_RATE: 0.5 # HEAD_ACT: sigmoid TEST: ENABLE: True DATASET: ava BATCH_SIZE: 1 DATA_LOADER: NUM_WORKERS: 2 PIN_MEMORY: True NUM_GPUS: 1 NUM_SHARDS: 1 RNG_SEED: 0 OUTPUT_DIR: '/data/SCB/slowfast/mywork/out/'
注意 NUM_GPUS 和 TEST.BATCH_SIZE 要保持一致
python tools/run_net.py \
--cfg configs/AVA/c2/SLOWFAST_32x2_R101_50_50s.yaml
在日志文件中添加类似如下内容:
{ 'PascalBoxes_PerformanceByCategory/AP@0.5IOU/hand-raising': 0.9341844125742432,
'PascalBoxes_PerformanceByCategory/AP@0.5IOU/reading': 0.29780414588177817,
'PascalBoxes_PerformanceByCategory/AP@0.5IOU/writing': 0.375,
'PascalBoxes_Precision/mAP@0.5IOU': 0.5356628528186738}
在"slowfast/slowfast/utils/ava_eval_helper.py"
添加:
logger.info("AVA eval done in %f seconds." % (time.time() - eval_start))
logger.info(results)
return results["PascalBoxes_Precision/mAP@0.5IOU"]
结果如下:
[深度学习][原创]slowfast的demo跑起来的正确方法
[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-开山篇
[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-流程篇
[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-配置文件篇
[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-训练测试篇
[深度学习][原创]mmaction2时空动作检测过滤成自己想要的类别
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。