赞
踩
Apache DolphinScheduler
(简称DolphinScheduler)是一种开源的、分布式的、易于使用的大数据工作流调度系统。它旨在为大数据处理提供一个可靠、高效和可扩展的调度解决方案。
这里只讲快速部署,想了解更多可以查阅我这篇文章:Apache DolphinScheduler(海豚调度系统)介绍与环境部署
# 安装yum-config-manager配置工具
yum -y install yum-utils
# 建议使用阿里云yum源:(推荐)
#yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
# 安装docker-ce版本
yum install -y docker-ce
# 启动并开机启动
systemctl enable --now docker
docker --version
curl -SL https://github.com/docker/compose/releases/download/v2.16.0/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
docker-compose --version
这里选择docker快速部署的方式:通过 docker-compose 快速部署 MySQL保姆级教程
git clone https://gitee.com/hadoop-bigdata/docker-compose-mysql.git
cd docker-compose-mysql
# create network
docker network create hadoop-network
# 部署
docker-compose -f docker-compose.yaml up -d
# 查看
docker-compose -f docker-compose.yaml ps
# 登录mysql
mysql -uroot -p
# 输入密码:123456
# 创建数据库
create database dolphinscheduler character set utf8 ;
CREATE USER 'dolphinscheduler'@'%'IDENTIFIED BY 'dolphinscheduler@123';
GRANT ALL PRIVILEGES ON dolphinscheduler.* TO 'dolphinscheduler'@'%';
FLUSH PRIVILEGES;
这里选择docker快速部署的方式:【中间件】通过 docker-compose 快速部署 Zookeeper 保姆级教程
git clone https://gitee.com/hadoop-bigdata/docker-compose-zookeeper.git
cd docker-compose-zookeeper
# 部署
docker-compose -f docker-compose.yaml up -d
# 查看
docker-compose -f docker-compose.yaml ps
wget https://dlcdn.apache.org/dolphinscheduler/3.1.7/apache-dolphinscheduler-3.1.7-bin.tar.gz --no-check-certificate
dolphinscheduler/bin/env/install_env.sh
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ---------------------------------------------------------
# INSTALL MACHINE
# ---------------------------------------------------------
# A comma separated list of machine hostname or IP would be installed DolphinScheduler,
# including master, worker, api, alert. If you want to deploy in pseudo-distributed
# mode, just write a pseudo-distributed hostname
# Example for hostnames: ips="ds1,ds2,ds3,ds4,ds5", Example for IPs: ips="192.168.8.1,192.168.8.2,192.168.8.3,192.168.8.4,192.168.8.5"
# ips=${ips:-"ds1,ds2,ds3,ds4,ds5"}
ips="ds-dolphinscheduler-master-1,ds-dolphinscheduler-master-2,ds-dolphinscheduler-worker-1,ds-dolphinscheduler-worker-2,ds-dolphinscheduler-worker-3,ds-dolphinscheduler-api-1,ds-dolphinscheduler-alert-1"
# Port of SSH protocol, default value is 22. For now we only support same port in all `ips` machine
# modify it if you use different ssh port
sshPort=${sshPort:-"22"}
# A comma separated list of machine hostname or IP would be installed Master server, it
# must be a subset of configuration `ips`.
# Example for hostnames: masters="ds1,ds2", Example for IPs: masters="192.168.8.1,192.168.8.2"
# masters=${masters:-"ds1,ds2"}
masters="ds-dolphinscheduler-master-1,ds-dolphinscheduler-master-2"
# A comma separated list of machine <hostname>:<workerGroup> or <IP>:<workerGroup>.All hostname or IP must be a
# subset of configuration `ips`, And workerGroup have default value as `default`, but we recommend you declare behind the hosts
# Example for hostnames: workers="ds1:default,ds2:default,ds3:default", Example for IPs: workers="192.168.8.1:default,192.168.8.2:default,192.168.8.3:default"
# workers=${workers:-"ds1:default,ds2:default,ds3:default,ds4:default,ds5:default"}
workers="ds-dolphinscheduler-worker-1:default,ds-dolphinscheduler-worker-2:default,ds-dolphinscheduler-worker-3:default"
# A comma separated list of machine hostname or IP would be installed Alert server, it
# must be a subset of configuration `ips`.
# Example for hostname: alertServer="ds3", Example for IP: alertServer="192.168.8.3"
# alertServer=${alertServer:-"ds3"}
alertServer="ds-dolphinscheduler-alert-1"
# A comma separated list of machine hostname or IP would be installed API server, it
# must be a subset of configuration `ips`.
# Example for hostname: apiServers="ds1", Example for IP: apiServers="192.168.8.1"
# apiServers=${apiServers:-"ds1"}
apiServers="ds-dolphinscheduler-api-1"
# The directory to install DolphinScheduler for all machine we config above. It will automatically be created by `install.sh` script if not exists.
# Do not set this configuration same as the current path (pwd). Do not add quotes to it if you using related path.
installPath=${installPath:-"/tmp/dolphinscheduler"}
# The user to deploy DolphinScheduler for all machine we config above. For now user must create by yourself before running `install.sh`
# script. The user needs to have sudo privileges and permissions to operate hdfs. If hdfs is enabled than the root directory needs
# to be created by this user
deployUser=${deployUser:-"dolphinscheduler"}
# The root of zookeeper, for now DolphinScheduler default registry server is zookeeper.
zkRoot=${zkRoot:-"/dolphinscheduler"}
dolphinscheduler/bin/env/dolphinscheduler_env.sh
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# JAVA_HOME, will use it to start DolphinScheduler server
# export JAVA_HOME=${JAVA_HOME:-/opt/java/openjdk}
export JAVA_HOME=/opt/apache/jdk1.8.0_212
# Database related configuration, set database type, username and password
# export DATABASE=${DATABASE:-postgresql}
export DATABASE=${DATABASE:-mysql}
export SPRING_PROFILES_ACTIVE=${DATABASE}
export SPRING_DATASOURCE_URL="jdbc:mysql://mysql-test:3306/dolphinscheduler?useUnicode=true&characterEncoding=UTF-8&useSSL=false"
export SPRING_DATASOURCE_USERNAME=dolphinscheduler
export SPRING_DATASOURCE_PASSWORD=dolphinscheduler@123
# DolphinScheduler server related configuration
export SPRING_CACHE_TYPE=${SPRING_CACHE_TYPE:-none}
export SPRING_JACKSON_TIME_ZONE=${SPRING_JACKSON_TIME_ZONE:-UTC}
export MASTER_FETCH_COMMAND_NUM=${MASTER_FETCH_COMMAND_NUM:-10}
# Registry center configuration, determines the type and link of the registry center
export REGISTRY_TYPE=${REGISTRY_TYPE:-zookeeper}
# export REGISTRY_ZOOKEEPER_CONNECT_STRING=${REGISTRY_ZOOKEEPER_CONNECT_STRING:-localhost:2181}
export REGISTRY_ZOOKEEPER_CONNECT_STRING="zookeeper-node1:2181,zookeeper-node2:2181,zookeeper-node3:2181"
# Tasks related configurations, need to change the configuration if you use the related tasks.
# export HADOOP_HOME=${HADOOP_HOME:-/opt/soft/hadoop}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-/opt/soft/hadoop/etc/hadoop}
export SPARK_HOME1=${SPARK_HOME1:-/opt/soft/spark1}
export SPARK_HOME2=${SPARK_HOME2:-/opt/soft/spark2}
export PYTHON_HOME=${PYTHON_HOME:-/opt/soft/python}
export HIVE_HOME=${HIVE_HOME:-/opt/soft/hive}
export FLINK_HOME=${FLINK_HOME:-/opt/soft/flink}
export DATAX_HOME=${DATAX_HOME:-/opt/soft/datax}
export SEATUNNEL_HOME=${SEATUNNEL_HOME:-/opt/soft/seatunnel}
export CHUNJUN_HOME=${CHUNJUN_HOME:-/opt/soft/chunjun}
export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$FLINK_HOME/bin:$DATAX_HOME/bin:$SEATUNNEL_HOME/bin:$CHUNJUN_HOME/bin:$PATH
【温馨提示】注意: DolphinScheduler 本身不依赖 Hadoop、Hive、Spark,但如果你运行的任务需要依赖他们,就需要有对应的环境支持。这里暂不添加这些依赖,如有需求的小伙伴,可以关注我公众号:
大数据与云原生技术分享
联系到我。
dolphinscheduler/master-server/bin/start.sh
BIN_DIR=$(dirname $0)
DOLPHINSCHEDULER_HOME=${DOLPHINSCHEDULER_HOME:-$(cd $BIN_DIR/..; pwd)}
source "$DOLPHINSCHEDULER_HOME/conf/dolphinscheduler_env.sh"
JAVA_OPTS=${JAVA_OPTS:-"-server -Duser.timezone=${SPRING_JACKSON_TIME_ZONE} -Xms1g -Xmx1g -Xmn1g -XX:+PrintGCDetails -Xloggc:gc.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=dump.hprof"}
if [[ "$DOCKER" == "true" ]]; then
JAVA_OPTS="${JAVA_OPTS} -XX:-UseContainerSupport"
fi
$JAVA_HOME/bin/java $JAVA_OPTS \
-cp "$DOLPHINSCHEDULER_HOME/conf":"$DOLPHINSCHEDULER_HOME/libs/*" \
org.apache.dolphinscheduler.server.master.MasterServer
dolphinscheduler/api-server/bin/start.sh
BIN_DIR=$(dirname $0)
DOLPHINSCHEDULER_HOME=${DOLPHINSCHEDULER_HOME:-$(cd $BIN_DIR/..; pwd)}
source "$DOLPHINSCHEDULER_HOME/conf/dolphinscheduler_env.sh"
JAVA_OPTS=${JAVA_OPTS:-"-server -Duser.timezone=${SPRING_JACKSON_TIME_ZONE} -Xms1g -Xmx1g -Xmn512m -XX:+PrintGCDetails -Xloggc:gc.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=dump.hprof"}
if [[ "$DOCKER" == "true" ]]; then
JAVA_OPTS="${JAVA_OPTS} -XX:-UseContainerSupport"
fi
$JAVA_HOME/bin/java $JAVA_OPTS \
-cp "$DOLPHINSCHEDULER_HOME/conf":"$DOLPHINSCHEDULER_HOME/libs/*" \
org.apache.dolphinscheduler.api.ApiApplicationServer
dolphinscheduler/alert-server/bin/start.sh
BIN_DIR=$(dirname $0)
DOLPHINSCHEDULER_HOME=${DOLPHINSCHEDULER_HOME:-$(cd $BIN_DIR/..; pwd)}
source "$DOLPHINSCHEDULER_HOME/conf/dolphinscheduler_env.sh"
JAVA_OPTS=${JAVA_OPTS:-"-server -Duser.timezone=${SPRING_JACKSON_TIME_ZONE} -Xms1g -Xmx1g -Xmn512m -XX:+PrintGCDetails -Xloggc:gc.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=dump.hprof"}
if [[ "$DOCKER" == "true" ]]; then
JAVA_OPTS="${JAVA_OPTS} -XX:-UseContainerSupport"
fi
$JAVA_HOME/bin/java $JAVA_OPTS \
-cp "$DOLPHINSCHEDULER_HOME/conf":"$DOLPHINSCHEDULER_HOME/libs/*" \
org.apache.dolphinscheduler.api.ApiApplicationServer
[root@local-168-182-110 docker-compose-mysql]# cat ../dolphinscheduler/apache-dolphinscheduler-3.1.7-bin/alert-server/bin/start.sh|grep -v '#'
BIN_DIR=$(dirname $0)
DOLPHINSCHEDULER_HOME=${DOLPHINSCHEDULER_HOME:-$(cd $BIN_DIR/..; pwd)}
source "$DOLPHINSCHEDULER_HOME/conf/dolphinscheduler_env.sh"
JAVA_OPTS=${JAVA_OPTS:-"-server -Duser.timezone=${SPRING_JACKSON_TIME_ZONE} -Xms1g -Xmx1g -Xmn512m -XX:+PrintGCDetails -Xloggc:gc.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=dump.hprof"}
if [[ "$DOCKER" == "true" ]]; then
JAVA_OPTS="${JAVA_OPTS} -XX:-UseContainerSupport"
fi
$JAVA_HOME/bin/java $JAVA_OPTS \
-cp "$DOLPHINSCHEDULER_HOME/conf":"$DOLPHINSCHEDULER_HOME/libs/*" \
org.apache.dolphinscheduler.alert.AlertServer
dolphinscheduler/worker-server/bin/start.sh
BIN_DIR=$(dirname $0)
DOLPHINSCHEDULER_HOME=${DOLPHINSCHEDULER_HOME:-$(cd $BIN_DIR/..; pwd)}
source "$DOLPHINSCHEDULER_HOME/conf/dolphinscheduler_env.sh"
export DOLPHINSCHEDULER_WORK_HOME=${DOLPHINSCHEDULER_HOME}
JAVA_OPTS=${JAVA_OPTS:-"-server -Duser.timezone=${SPRING_JACKSON_TIME_ZONE} -Xms1g -Xmx1g -Xmn2g -XX:+PrintGCDetails -Xloggc:gc.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=dump.hprof"}
if [[ "$DOCKER" == "true" ]]; then
JAVA_OPTS="${JAVA_OPTS} -XX:-UseContainerSupport"
fi
$JAVA_HOME/bin/java $JAVA_OPTS \
-cp "$DOLPHINSCHEDULER_HOME/conf":"$DOLPHINSCHEDULER_HOME/libs/*" \
org.apache.dolphinscheduler.server.worker.WorkerServer
wget https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.16/mysql-connector-java-8.0.16.jar
#!/usr/bin/env sh
wait_for() {
echo Waiting for $1 to listen on $2...
while ! nc -z $1 $2; do echo waiting...; sleep 1s; done
}
startDolphinScheduler() {
node_type=$1
if [ "$node_type" = "master" ];then
bash ${DolphinScheduler_HOME}/bin/dolphinscheduler-daemon.sh start master-server
# 查看日志
tail -f ${DolphinScheduler_HOME}/master-server/logs/dolphinscheduler-master.log
elif [ "$node_type" = "api" ];then
wait_for $2 $3
bash ${DolphinScheduler_HOME}//bin/dolphinscheduler-daemon.sh start api-server
# 查看日志
tail -f ${DolphinScheduler_HOME}/api-server/logs/dolphinscheduler-api.log
elif [ "$node_type" = "alert" ];then
wait_for $2 $3
bash ${DolphinScheduler_HOME}//bin/dolphinscheduler-daemon.sh start alert-server
# 查看日志
tail -f ${DolphinScheduler_HOME}/alert-server/logs/dolphinscheduler-alert.log
elif [ "$node_type" = "worker" ];then
wait_for $2 $3
bash ${DolphinScheduler_HOME}//bin/dolphinscheduler-daemon.sh start worker-server
# 查看日志
tail -f ${DolphinScheduler_HOME}/worker-server/logs/dolphinscheduler-worker.log
fi
}
# 初始化数据库
bash ${DolphinScheduler_HOME}/tools/bin/upgrade-schema.sh
startDolphinScheduler $@
FROM registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos-jdk:7.7.1908
ADD apache-dolphinscheduler-3.1.7-bin.tar.gz /opt/apache
# 添加 DolphinScheduler 包
ENV DolphinScheduler_VERSION 3.1.7
ADD apache-dolphinscheduler-${DolphinScheduler_VERSION}-bin.tar.gz /opt/apache/
ENV DolphinScheduler_HOME /opt/apache/dolphinscheduler
RUN ln -s /opt/apache/apache-dolphinscheduler-${DolphinScheduler_VERSION}-bin $DolphinScheduler_HOME
# 添加MySQL 驱动
COPY mysql-connector-java-8.0.16.jar ${DolphinScheduler_HOME}/tools/libs/
COPY mysql-connector-java-8.0.16.jar ${DolphinScheduler_HOME}/master-server/libs/
COPY mysql-connector-java-8.0.16.jar ${DolphinScheduler_HOME}/worker-server/libs/
COPY mysql-connector-java-8.0.16.jar ${DolphinScheduler_HOME}/alert-server/libs/
COPY mysql-connector-java-8.0.16.jar ${DolphinScheduler_HOME}/api-server/libs/
# copy bootstrap.sh
COPY bootstrap.sh /opt/apache/
RUN chmod +x /opt/apache/bootstrap.sh
WORKDIR /opt/apache
开始构建镜像
docker build -t registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/dolphinscheduler:3.1.7 . --no-cache --progress=plain
# 为了方便小伙伴下载即可使用,我这里将镜像文件推送到阿里云的镜像仓库
docker push registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/dolphinscheduler:3.1.7
### 参数解释
# -t:指定镜像名称
# . :当前目录Dockerfile
# -f:指定Dockerfile路径
# --no-cache:不缓存
version: '3'
services:
dolphinscheduler-master:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/dolphinscheduler:3.1.7
user: "hadoop:hadoop"
restart: always
privileged: true
env_file:
- .env
volumes:
- ./dolphinscheduler/bin/env/install_env.sh:${DolphinScheduler_HOME}/bin/env/install_env.sh
- ./dolphinscheduler/bin/env/dolphinscheduler_env.sh:${DolphinScheduler_HOME}/bin/env/dolphinscheduler_env.sh
- ./dolphinscheduler/master-server/bin/start.sh:${DolphinScheduler_HOME}/master-server/bin/start.sh
- ./dolphinscheduler/worker-server/bin/start.sh:${DolphinScheduler_HOME}/worker-server/bin/start.sh
- ./dolphinscheduler/alert-server/bin/start.sh:${DolphinScheduler_HOME}/alert-server/bin/start.sh
- ./dolphinscheduler/api-server/bin/start.sh:${DolphinScheduler_HOME}/api-server/bin/start.sh
expose:
- "${DolphinScheduler_MASTER_PORT}"
deploy:
replicas: 2
command: ["sh","-c","/opt/apache/bootstrap.sh master"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${DolphinScheduler_MASTER_PORT} || exit 1"]
interval: 15s
timeout: 15s
retries: 5
dolphinscheduler-worker:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/dolphinscheduler:3.1.7
user: "hadoop:hadoop"
restart: always
privileged: true
env_file:
- .env
volumes:
- ./dolphinscheduler/bin/env/install_env.sh:${DolphinScheduler_HOME}/bin/env/install_env.sh
- ./dolphinscheduler/bin/env/dolphinscheduler_env.sh:${DolphinScheduler_HOME}/bin/env/dolphinscheduler_env.sh
- ./dolphinscheduler/master-server/bin/start.sh:${DolphinScheduler_HOME}/master-server/bin/start.sh
- ./dolphinscheduler/worker-server/bin/start.sh:${DolphinScheduler_HOME}/worker-server/bin/start.sh
- ./dolphinscheduler/alert-server/bin/start.sh:${DolphinScheduler_HOME}/alert-server/bin/start.sh
- ./dolphinscheduler/api-server/bin/start.sh:${DolphinScheduler_HOME}/api-server/bin/start.sh
expose:
- "${DolphinScheduler_WORKER_PORT}"
deploy:
replicas: 3
command: ["sh","-c","/opt/apache/bootstrap.sh worker ds-dolphinscheduler-master-1 ${DolphinScheduler_MASTER_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${DolphinScheduler_WORKER_PORT} || exit 1"]
interval: 15s
timeout: 15s
retries: 5
dolphinscheduler-api:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/dolphinscheduler:3.1.7
user: "hadoop:hadoop"
restart: always
privileged: true
env_file:
- .env
volumes:
- ./dolphinscheduler/bin/env/install_env.sh:${DolphinScheduler_HOME}/bin/env/install_env.sh
- ./dolphinscheduler/bin/env/dolphinscheduler_env.sh:${DolphinScheduler_HOME}/bin/env/dolphinscheduler_env.sh
- ./dolphinscheduler/master-server/bin/start.sh:${DolphinScheduler_HOME}/master-server/bin/start.sh
- ./dolphinscheduler/worker-server/bin/start.sh:${DolphinScheduler_HOME}/worker-server/bin/start.sh
- ./dolphinscheduler/alert-server/bin/start.sh:${DolphinScheduler_HOME}/alert-server/bin/start.sh
- ./dolphinscheduler/api-server/bin/start.sh:${DolphinScheduler_HOME}/api-server/bin/start.sh
ports:
- "${DolphinScheduler_API_PORT}"
deploy:
replicas: 1
command: ["sh","-c","/opt/apache/bootstrap.sh api ds-dolphinscheduler-master-1 ${DolphinScheduler_MASTER_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${DolphinScheduler_API_PORT} || exit 1"]
interval: 15s
timeout: 15s
retries: 5
dolphinscheduler-alert:
image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/dolphinscheduler:3.1.7
user: "hadoop:hadoop"
restart: always
privileged: true
env_file:
- .env
volumes:
- ./dolphinscheduler/bin/env/install_env.sh:${DolphinScheduler_HOME}/bin/env/install_env.sh
- ./dolphinscheduler/bin/env/dolphinscheduler_env.sh:${DolphinScheduler_HOME}/bin/env/dolphinscheduler_env.sh
- ./dolphinscheduler/master-server/bin/start.sh:${DolphinScheduler_HOME}/master-server/bin/start.sh
- ./dolphinscheduler/worker-server/bin/start.sh:${DolphinScheduler_HOME}/worker-server/bin/start.sh
- ./dolphinscheduler/alert-server/bin/start.sh:${DolphinScheduler_HOME}/alert-server/bin/start.sh
- ./dolphinscheduler/api-server/bin/start.sh:${DolphinScheduler_HOME}/api-server/bin/start.sh
expose:
- "${DolphinScheduler_ALERT_PORT}"
deploy:
replicas: 1
command: ["sh","-c","/opt/apache/bootstrap.sh alert ds-dolphinscheduler-master-1 ${DolphinScheduler_MASTER_PORT}"]
networks:
- hadoop-network
healthcheck:
test: ["CMD-SHELL", "netstat -tnlp|grep :${DolphinScheduler_ALERT_PORT} || exit 1"]
interval: 10s
timeout: 10s
retries: 5
# 连接外部网络
networks:
hadoop-network:
external: true
.env
文件内容:
DolphinScheduler_HOME=/opt/apache/dolphinscheduler
DolphinScheduler_MASTER_PORT=5678
DolphinScheduler_WORKER_PORT=1234
DolphinScheduler_API_PORT=12345
DolphinScheduler_ALERT_PORT=50052
# p=sr:项目名,默认项目名是当前目录名称
docker-compose -f docker-compose.yaml -p=ds up -d
# 查看
docker-compose -f docker-compose.yaml -p=ds ps
# 卸载
docker-compose -f docker-compose.yaml -p=ds down
# http://<your_ip>:12345/dolphinscheduler/ui/login
# 这里的端口是api 对外的端口,可以通过命令获取对外端口,docker-compose -f docker-compose.yaml -p=ds down
http://192.168.182.110:32770/dolphinscheduler/ui/login
默认账户密码:admin/dolphinscheduler123
# 初始化数据库
bash ${DolphinScheduler_HOME}/tools/bin/upgrade-schema.sh
# 启停 Master
bash ./bin/dolphinscheduler-daemon.sh start master-server
# 查看日志
tail -f master-server/logs/dolphinscheduler-master.log
# bash ./bin/dolphinscheduler-daemon.sh stop master-server
# 启停 Api
bash ./bin/dolphinscheduler-daemon.sh start api-server
# 查看日志
tail -f api-server/logs/dolphinscheduler-api.log
# bash ./bin/dolphinscheduler-daemon.sh stop api-server
# 启停 Alert
bash ./bin/dolphinscheduler-daemon.sh start alert-server
# 查看日志
tail -f alert-server/logs/dolphinscheduler-alert.log
# bash ./bin/dolphinscheduler-daemon.sh stop alert-server
# 启停 Worker
bash ./bin/dolphinscheduler-daemon.sh start worker-server
# 查看日志
tail -f worker-server/logs/dolphinscheduler-worker.log
# bash ./bin/dolphinscheduler-daemon.sh stop worker-server
这里没有添加hadoop等组件的依赖包,如有需要用到大数据组件依赖包,则可以在我的镜像基础之上添加依赖包即可,如有任何问题可以关注我公众号:大数据与云原生技术分享
来咨询问题,如本篇文章对您有所帮助,麻烦帮忙一键三连(点赞、转发、收藏)~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。