赞
踩
关于ResNet的实现
通用框架的实现
import torch from torch import Tensor import torch.nn.functional as F from torch import nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_channel, out_channel, stride=1, downsample=None, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=(1,1), stride=(1,1), bias=False) # squeeze channels self.bn1 = norm_layer(out_channel) # ----------------------------------------- self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=(3,3), stride=(stride,stride), bias=False, padding=(1,1)) self.bn2 = norm_layer(out_channel) # ----------------------------------------- self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion, kernel_size=(1,1), stride=(1,1), bias=False) # unsqueeze channels self.bn3 = norm_layer(out_channel * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, blocks_num, num_classes=1000, include_top=True, norm_layer=None): ''' :param block:块 :param blocks_num:块数 :param num_classes: 分类数 :param include_top: :param norm_layer: BN ''' super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.include_top = include_top self.in_channel = 64 self.conv1 = nn.Conv2d(in_channels=3, out_channels=self.in_channel, kernel_size=(7,7), stride=(2,2), padding=(3,3), bias=False) self.bn1 = norm_layer(self.in_channel) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, blocks_num[0]) self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2) if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1) self.fc = nn.Linear(512 * block.expansion, num_classes) ''' 初始化 ''' for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') def _make_layer(self, block, channel, block_num, stride=1): norm_layer = self._norm_layer downsample = None if stride != 1 or self.in_channel != channel * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=(1,1), stride=(stride,stride), bias=False), norm_layer(channel * block.expansion)) layers = [] layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride, norm_layer=norm_layer)) self.in_channel = channel * block.expansion for _ in range(1, block_num): layers.append(block(self.in_channel, channel, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.include_top: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x
通过传入超参数的不同实现不同的ResNet结构
不同的传入参数结构
resnet50 [3,4,6,3]
resnet101 [3,4,23,3]
resnet152 [3,8,36,3]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。