当前位置:   article > 正文

Kafka源码剖析:内存池_kafka nonpooledavailablememory

kafka nonpooledavailablememory

1. Why BufferPool ?

Kafka Producer以ProducerBatch为单位发送数据,而ProducerBatch中的数据以ByteBuffer的形式进行存储。当发送端数据量极大时,ByteBuffer就会无限制地频繁申请,可能会引发OOM;另外,发送完数据后,ByteBuffer就会释放,会频繁的引发FullGC,影响Kafka性能。
为此,设计了Kafka Producer端的内存池,它具有以下功能:

  1. 限制可以申请的内存总量totalMemory,防止OOM,totalMemory可以通过KafkaProducer配置项指定;
  2. free池持有ProducerRecord的引用,减少FullGC的频率;

KafkaProducer发送流程:
在这里插入图片描述
KafkaProducer相关数据结构:
在这里插入图片描述

1.1 Why two kinds of pools ?

为什么需要free池?
new一个对象时,需要经历申请对象空间、设置引用(引用常量池中的常量,引用堆中的对象)等过程,代价较大。而如果能够直接从一个容器中取出已经实例化好的对象,则可以省去以上步骤,避免频繁的实例化。而要想将ByteBuffer都实例化好,则必然需要给ByteBuffer设定一个大小即poolableSize。

为什么需要availableMemory池?
由于free池中的ByteBuffer对象都是固定大小的,而KafkaProducer端发送的数据未必都能被ByteBuffer装下,因此遇到size > poolableSize的时候,我们需要通过availableMemory池来申请ByteBuffer对象。

2. What is a BufferPool ?

名词解释:
free:该池子中存储大小等于poolableSize的ByteBuffer;

availableMemory:内存池中,除了free池和已申请的ByteBuffer,剩余的字节大小。物理上,其处于JVM堆内存中,只是通过nonPooledAvailableMemory标记来约束其可以从堆内存申请的字节大小;

totalMemory:内存池可以申请的ByteBuffer字节总大小;

poolableSize:free池中ByteBuffer的固定大小;
在这里插入图片描述

3. How BufferPool run ?

步骤:

  1. 如果申请的ByteBuffer size超过totalMemory,抛异常;
  2. 如果申请的size符合预设的poolableSize,则从free池获取;
  3. 如果申请的size不符合预设的poolableSize,但是free池和availableMemory池的总大小可以满足
    1. 尝试从availableMemory池直接申请;
    2. 如果availableMemory池容量小于size,释放free池中的ByteBuffer,添加到availableMemory池;(nonPooledAvailableMemory + = poolableSize),然后再从availableMemory池直接申请;
  4. free池和availableMemory池的总大小不足矣满足size大小,则等待已申请的ByteBuffer释放,ProducerRecord在成功发送到broker后(参考Sender#handleProduceResponse),会进行ByteBuffer的释放。释放的字节大小会重新回到free池或availableMemory池,释放的字节大小通过accumulated计数器进行技术,当accumulated >= size,再进行申请;

流程图:
在这里插入图片描述
源码:


public class BufferPool {

    static final String WAIT_TIME_SENSOR_NAME = "bufferpool-wait-time";
	// 内存池最多可以申请的字节大小
    private final long totalMemory;
    // free池中单个ByteBuffer的大小
    private final int poolableSize;
    // free池用一个双端队列来持有,因此其中的ByteBuffer不会被GC
    private final Deque<ByteBuffer> free;
    // 用于等待已申请的ByteBuffer释放的条件锁
    private final Deque<Condition> waiters;
	// 用于标记AvailableMemory的大小
    private long nonPooledAvailableMemory;


    public ByteBuffer allocate(int size, long maxTimeToBlockMs) throws InterruptedException {
    	// 申请的size大于内存池总大小,抛异常,可以通过KafkaProducer进行重新设置
        if (size > this.totalMemory)
            throw new IllegalArgumentException("Attempt to allocate " + size
                                               + " bytes, but there is a hard limit of "
                                               + this.totalMemory
                                               + " on memory allocations.");

        ByteBuffer buffer = null;
        this.lock.lock();
        try {
        	// size == poolableSize,直接从free池申请
            if (size == poolableSize && !this.free.isEmpty())
                return this.free.pollFirst();

            int freeListSize = freeSize() * this.poolableSize;
            // free池和availableMemory池的总量足够
            if (this.nonPooledAvailableMemory + freeListSize >= size) {
                // 如果availableMemory池的容量不够,则释放free池中的ByteBuffer,增加到availableMemory池
                freeUp(size);
                this.nonPooledAvailableMemory -= size;
            } else {
            	// 计数器,用于累计已经通过ByteBuffer释放得到的字节大小
                int accumulated = 0;
                // 条件锁
                Condition moreMemory = this.lock.newCondition();
                try {
                    long remainingTimeToBlockNs = TimeUnit.MILLISECONDS.toNanos(maxTimeToBlockMs);
                    this.waiters.addLast(moreMemory);
                    // loop,直到ProducerRecord释放的ByteBuffer足够大
                    while (accumulated < size) {
                        long startWaitNs = time.nanoseconds();
                        long timeNs;
                        boolean waitingTimeElapsed;
                        try {
                        	// await超时则退出,返回false;或者被唤醒退出,返回true
                            waitingTimeElapsed = !moreMemory.await(remainingTimeToBlockNs, TimeUnit.NANOSECONDS);
                        } finally {
                            long endWaitNs = time.nanoseconds();
                            timeNs = Math.max(0L, endWaitNs - startWaitNs);
                            this.waitTime.record(timeNs, time.milliseconds());
                        }
						// 超时抛异常
                        if (waitingTimeElapsed) {
                            throw new TimeoutException("Failed to allocate memory within the configured max blocking time " + maxTimeToBlockMs + " ms.");
                        }

                        remainingTimeToBlockNs -= timeNs;

                       	// 如果外部释放空间的ByteBuffer大小为poolableSize,则会被放回free池,此时可以从free池获取需要的ByteBuffer
                        if (accumulated == 0 && size == this.poolableSize && !this.free.isEmpty()) {
                            buffer = this.free.pollFirst();
                            accumulated = size;
                        } else {
                            // freeUp操作会给availableMemory池释放足够多的字节大小,因为存在两条释放链路,如下:
                            // 当释放的ByteBuffer大小 <= poolableSize:ByteBuffer -> free -> availableMemory
                            // 当释放的ByteBuffer大小 > poolableSize:ByteBuffer -> availableMemory
                            // 详情参考deallocate()方法
                            freeUp(size - accumulated);
                            int got = (int) Math.min(size - accumulated, this.nonPooledAvailableMemory);
                            this.nonPooledAvailableMemory -= got;
                            accumulated += got;
                        }
                    }
                    accumulated = 0;
                } finally {
                    this.nonPooledAvailableMemory += accumulated;
                    this.waiters.remove(moreMemory);
                }
            }
        } finally {
            try {
                if (!(this.nonPooledAvailableMemory == 0 && this.free.isEmpty()) && !this.waiters.isEmpty())
                    this.waiters.peekFirst().signal();
            } finally {
                lock.unlock();
            }
        }
		
        if (buffer == null)
        	// 通过availableMemory池申请ByteBuffer,即在nonPooledAvailableMemory标记足够大的条件下,通过堆内存申请ByteBuffer
            return safeAllocateByteBuffer(size);
        else
            return buffer;
    }


    private ByteBuffer safeAllocateByteBuffer(int size) {
        boolean error = true;
        try {
        	// 申请内存
            ByteBuffer buffer = allocateByteBuffer(size);
            error = false;
            return buffer;
        } finally {
            if (error) {
                this.lock.lock();
                try {
                    this.nonPooledAvailableMemory += size;
                    if (!this.waiters.isEmpty())
                        this.waiters.peekFirst().signal();
                } finally {
                    this.lock.unlock();
                }
            }
        }
    }

    // 申请内存
    protected ByteBuffer allocateByteBuffer(int size) {
        return ByteBuffer.allocate(size);
    }

	// freeUp操作会给availableMemory池释放足够多的字节大小,因为存在两条释放链路,如下:
	// 当释放的ByteBuffer大小 <= poolableSize:ByteBuffer -> free -> availableMemory
	// 当释放的ByteBuffer大小 > poolableSize:ByteBuffer -> availableMemory
	// 详情参考deallocate()方法
    private void freeUp(int size) {
        while (!this.free.isEmpty() && this.nonPooledAvailableMemory < size)
            this.nonPooledAvailableMemory += this.free.pollLast().capacity();
    }

    public void deallocate(ByteBuffer buffer, int size) {
        lock.lock();
        try {
        	// 当size == poolableSize,ByteBuffer释放后回到free池
            if (size == this.poolableSize && size == buffer.capacity()) {
                buffer.clear();
                this.free.add(buffer);
            } else {
            	// 当size != poolableSize,ByteBuffer释放后回到availableMemory池
                this.nonPooledAvailableMemory += size;
            }
            Condition moreMem = this.waiters.peekFirst();
            if (moreMem != null)
                moreMem.signal();
        } finally {
            lock.unlock();
        }
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158

Flink中的内存池技术与Kafka的内存池大同小异,可举一反三。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/626027
推荐阅读
相关标签
  

闽ICP备14008679号