当前位置:   article > 正文

sklearn实现基于TF-IDF的KNN新闻标题文本分类_tfidnwk

tfidnwk

要使用scikit-learn实现基于TF-IDF的KNN新闻标题文本分类,可以按照以下步骤进行操作:

 

1.导入所需的库和模块:


from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import train_test_spli


2.准备数据集,将新闻标题文本和对应的标签(类别)存储在两个列表中:


titles = ['news title 1', 'news title 2', ..., 'news title n']
labels = ['category 1', 'category 2', ..., 'category n']
3.对标题文本进行TF-IDF向量化处理:

tfidf_vectorizer = TfidfVectorizer()

tfidf_matrix = tfidf_vectorizer.fit_transform(titles)


4.将TF-IDF矩阵和标签列表拆分为训练集和测试集:


X_train, X_test, y_train, y_test = train_test_split(tfidf_matrix, labels, test_size=0.2, random_state=42)


5.训练KNN分类器:


knn_classifier = KNeigh

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/629584
推荐阅读
  

闽ICP备14008679号