当前位置:   article > 正文

DES加密算法介绍(含例子)

给定des的初始密钥为k=(fedcba9876543210)(十六进制),试求出子密钥k1,k2

http://www.hankcs.com/security/des-algorithm-illustrated.html

DES(Data Encryption Standard)算法是世界上最常用的加密算法。在很长时间内,许多人心目中“密码生成”与DES一直是个同义词。

DES是怎么工作的?本文通过一个简单的例子来一部一部展示DES的加密流程。自动DES诞生以来,许多加密算法都采用了类似DES的手段。一旦理解了DES中的变换,你一定能够更轻松的理解这些现代加密算法中的门道。

 

DES处理比特,或者说二进制数字,我们知道,没四个比特构成一个十六进制数。DES加密一组64位的信息,也就是16个16进制数。为了完成加密,DES

 

DES秘钥获取:

我们取16进制秘钥K为:

K = 133457799BBCDFF1

我们可以得到他的二进制形式(1为0001,3为0011,依次类推,并且将没8位写成一组。这样每组的最后一位都没有被用上。)

K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001

创建16个子秘钥,每个长48比特

这个64位的秘钥首先根据表格PC-1进行变换。

表PC-1

PC-1
5749413325179
1585042342618
1025951433527
1911360524436
63554739312315
7625446383022
1466153453729
211352820124

 由于上表中第一个元素为57,这将使元秘钥的第57位变换为新秘钥K+的第一位。同理,元秘钥的第49位变换为新秘钥的第2位,,,元秘钥的第4位变换为新秘钥的最后一位,注意元秘钥中只有56位会进入新秘钥,上表也只有56个元素。

比如,对于原秘钥:

K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001

我们将得到56位新秘钥:

K+ = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

然后,我们将这个密钥拆分为左右两个部分,C0和D0,每半边都有28位。

比如,对于新密钥,我们得到:

C0 = 1111000 0110011 0010101 0101111 
D0 = 0101010 1011001 1001111 0001111

对于相同定义的C0和D0,我们现在创建16个块Cn和Dn 1<=n<=16.

每一对Cn和Dn都是由前一对Cn-1和Dn-1移位而来。具体来说,对于n=1,2,3,。。。,16,在前一轮移位的结果上,进行左移操作。什么叫左移?左移指的是将除第一位外的所有为往左移一位,将第一位移动至最后一位。

这意味着,比如说,C3和D3是C2和D2移位而来的,具体来说,通过2次左移位,C16和D16则是由C15和D15通过1次左移得到的。在所有情况下,一次左移就是将所有比特往左移动一位。使的一位后的比特的位置相较于变换前成为2,3,4,,,28,1.

比如,对于原始字谜要C0和D0,我们得到:

C0 = 1111000011001100101010101111
C1 = 1110000110011001010101011111
C2 = 1100001100110010101010111111
C3 = 0000110011001010101011111111
C4 = 0011001100101010101111111100
C5 = 1100110010101010111111110000
C6 = 0011001010101011111111000011
C7 = 1100101010101111111100001100
C8 = 0010101010111111110000110011
C9 = 0101010101111111100001100110
C10 = 0101010111111110000110011001
C11 = 0101011111111000011001100101
C12 = 0101111111100001100110010101
C13 = 0111111110000110011001010101
C14 = 1111111000011001100101010101
C15 = 1111100001100110010101010111
C16 = 1111000011001100101010101111
D0 = 0101010101100110011110001111
D1 = 1010101011001100111100011110
D2 = 0101010110011001111000111101
D3 = 0101011001100111100011110101
D4 = 0101100110011110001111010101
D5 = 0110011001111000111101010101
D6 = 1001100111100011110101010101
D7 = 0110011110001111010101010110
D8 = 1001111000111101010101011001
D9 = 0011110001111010101010110011
D10 = 1111000111101010101011001100
D11 = 1100011110101010101100110011
D12 = 0001111010101010110011001111
D13 = 0111101010101011001100111100
D14 = 1110101010101100110011110001
D15 = 1010101010110011001111000111
D16 = 0101010101100110011110001111

我们现在就可以得到第n轮的新秘钥Kn(1<=n<=16)了。具体做法是,对每一对拼合后的子秘钥CnDn,按照表PC-2执行变换:

PC-2
1417112415
3281562110
2319124268
1672720132
415231374755
304051453348
444939563453
464250362932

 

每对子秘钥有56位,但是PC-2仅仅使用其中48位。

于是,第你轮新秘钥Kn的第一位来自组合秘钥CnDn的第14位,第2位来自第17位,以此类推,知道新秘钥的第48位来自组合秘钥的第32位。

比如:

对于第一轮的组合秘钥,我们有:

C1D1 = 1110000 1100110 0101010 1011111 1010101 0110011 0011110 0011110

通过PC-2的变换后,得到:

K1 = 000110 110000 001011 101111 111111 000111 000001 110010

同理,对于其他秘钥,我们得到:

K2 = 011110 011010 111011 011001 110110 111100 100111 100101
K3 = 010101 011111 110010 001010 010000 101100 111110 011001
K4 = 011100 101010 110111 010110 110110 110011 010100 011101
K5 = 011111 001110 110000 000111 111010 110101 001110 101000
K6 = 011000 111010 010100 111110 010100 000111 101100 101111
K7 = 111011 001000 010010 110111 111101 100001 100010 111100
K8 = 111101 111000 101000 111010 110000 010011 101111 111011
K9 = 111000 001101 101111 101011 111011 011110 011110 000001
K10 = 101100 011111 001101 000111 101110 100100 011001 001111
K11 = 001000 010101 111111 010011 110111 101101 001110 000110
K12 = 011101 010111 000111 110101 100101 000110 011111 101001
K13 = 100101 111100 010111 010001 111110 101011 101001 000001
K14 = 010111 110100 001110 110111 111100 101110 011100 111010
K15 = 101111 111001 000110 001101 001111 010011 111100 001010
K16 = 110010 110011 110110 001011 000011 100001 011111 110101

关于子秘钥的话题我们就到此为止,接下来我们看信息本身。

 

DES是一个基于组块的加密算法,这意味着无论输入还是输出都是64位长度。也就是说DES产生了一种最多264中的变换方法。每个64位的区块被分为2个32位的部分,左半部分L和右半部分R。

比如明文,M为

M = 0123456789ABCDEF

这里的M是16进制的,将M写成二进制,我们得到一个64位的区块:

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
L = 0000 0001 0010 0011 0100 0101 0110 0111
R = 1000 1001 1010 1011 1100 1101 1110 1111

M的第一位是0,最后一位是1,我们从左读到右。

 

对于明文M,我们计算一下初始变换IP(Initial permutation)。IP是重新变换数据M的每一位产生的。产生过程由下表决定,表格的下标对应新数据的下标,表格的数值x表示新数据的这一位来自旧数据的第x位。

比如,对M的区块,执行初始变换,得到:

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010

接着讲变换IP分为32位的左半边L0和右半边R0

比如,对于上例,我们得到:

L0 = 1100 1100 0000 0000 1100 1100 1111 1111 
R0 = 1111 0000 1010 1010 1111 0000 1010 1010

 

我们接着执行16个迭代,对1<=n<=16,使用一个函数f.函数f输入两个区块,一个32位的数据块和一个48位的木曜区块Kn,输出一个32位的区块。定义+表示异或XOR。那么让n从1循环到16,我们计算:

Ln=Rn-1

Rn=Ln-1+f(Rn-1,Kn)

这样我们就得到最终区块,也就是n=16的L16R16.这个过程说白了就是,我们那前一个迭代结果的右边32位作为当前迭代的左边32位。对于当前迭代的右边32位,将它和上一个迭代的f函数的输出执行XOR运算。

比如,对于n=1,我们有:

K1 = 000110 110000 001011 101111 111111 000111 000001 110010 
L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010 
R1 = L0 + f(R0,K1)

剩下就是f函数是如何工作的了,为了计算f,我们首先扩展每个Rn-1,将其从32位扩展到48位,这是通过使用一张表来重复Rn-1中的一位位来实现的。我们称这个过程为函数E。也就是说函数E(Rn-1)输入32位输出48位。

 

定义E为函数E的输出,将其写成8组,每组6位,这些比特是通过选择输入的某些位来产的,具体选择顺序按照如下表格实现:

E BIT-SELECTION TABLE
3212345
456789
8910111213
121314151617
161718192021
202122232425
242526272829
28293031321

也就是说E(Rn-1)开头的三个比特分别来自Rn-1的第32、1和2位。E(Rn-1)末尾的2个比特分别来自Rn-1的第32位和第1位。

比如:给定R0,我们可以计算出E(R0):

R0 = 1111 0000 1010 1010 1111 0000 1010 1010 
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101

接着在f函数中,我们对输出E(Rn-1)和秘钥Kn执行XOR运算:

Kn+E(Rn-1)

比如,对K1,E(R0),我们有:

K1 = 000110 110000 001011 101111 111111 000111 000001 110010 
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101 
K1+E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111

到这里我们还没有完成f函数的运算,我们仅仅使用一张表将Rn-1从32位扩展为48位,并且对这个结果和秘钥Kn执行了异或运算。我们现在有了48位的结果,或者说8组6比特数据。我们现在要对每组的6比特执行一些奇怪的操作:

我们将它作为一张被称为“S盒”的表格的地址。每组6比特都将给我们一个位于不同S盒中的地址。在哪个地址里存放着一个4比特的数字。这个4比特的数字将会替换掉原来的6个比特。最终结果就是,8组6比特的数据被转换为8组4比特(一共32位)的数据。

将上一步的48位的结果写成如下形式:

Kn+E(Rn-1)=B1B2B3B4B5B6B7B8

每个Bi都是一个6比特的分组,我们现在计算

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)

其中,Si(Bi)指的是第i个S盒的输出。

为了计算每个S函数S1,S2,,,S8,取一个6位的区块作为输入,输出一个4位的区块。决定S1的表格如下:

S1Column Number

Row                
No.0123456789101112131415
01441312151183106125907
10157414213110612119538
24114813621115129731050
31512824917511314100613

如果S1是定义在这张表上的函数,B是一个6位的块,那么计算S1(B)的方法是:B的第一位和最后一位组合起来,的二进制数决定一个介于0和3之间的十进制数(或者二进制00到11之间)。设这个数为i,B的中间4位二进制数代表一个介于0到15之间的二进制数(二进制0000到1111)。设这个数为j。查表找到第i行第j列的那个数,这个是一个介于0和15之间的数,并且它是能由一个唯一的4位区块表示的。这个区块就是函数S1输入B得到的输出S1(B)。比如,对输入B=011011,第一位是0,最后一位是1,决定了行号是01,也就是十进制的1,中间4位是1101,也就是十进制的13,虽有列号是13.查表第一行第13列我们得到数字5.

这就决定了输出;5的二进制是0101,所以输出就是0101,即S1(011011)=0101。

同理,定义这8个函数S1,S2,,,S8:

S1
1441312151183106125907
0157414213110612119538
4114813621115129731050
1512824917511314100613

 

 

S2
1518146113497213120510
3134715281412011069115
0147111041315812693215
1381013154211671205149

 

S3
1009146315511312711428
1370934610285141211151
1364981530111212510147
1101306987415143115212

 

S4
7131430691012851112415
1381156150347212110149
1069012117131513145284
3150610113894511127214

 

S5
2124171011685315130149
1411212471315015103986
4211110137815912563014
1181271142136150910453

 

S6
1211015926801334147511
1015427129561131401138
9141552812370410113116
4321295151011141760813

 

S7
4112141508133129751061
1301174911014351221586
1411131237141015680592
6111381410795015142312

 

S8
1328461511110931450127
1151381037412561101492
7114191214206101315358
2114741081315129035611

例子:对弈第一轮,我们得到这8个S盒的输出:

K1+E(R0)=011000 010001 011110 111010 100001 100110 010100 100111

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)=0101 1100 1000 0010 1011 0101 1001 0111

函数f的最后一步就是对S盒的输出进行一个变换来产生最终值:

f=P(S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8))

变换P由如下表格定义。P输入32位数据,通过下表产生32位输出:

16   7  20  21
29  12  28  17
1  15  23  26
5  18  31  10
2   8  24  14
32  27   3   9
19  13  30   6
22  11   4  25

比如对8个S盒的输出:

S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)=0101 1100 1000 0010 1011 0101 1001 0111

我们得到:

f=0010 0011 0100 1010 1010 1001 1011 1011

那么R1=L0+f(R0,K1)

= 1100 1100 0000 0000 1100 1100 1111 1111 
+ 0010 0011 0100 1010 1010 1001 1011 1011 
= 1110 1111 0100 1010 0110 0101 0100 0100

 在下一轮迭代中,我们的L2=R1,这就是我们刚刚计算的结果。之后,我们必须计算R2=L1+f(R1,K2),一直完成16个迭代之后,我们有了区块L16和R16,。接着我们逆转两个区块的顺序得到一个64位的区块:

R16L16

然后,我们对其执行一个最终的IP-1,其定义如下:

 
408481656246432
397471555236331
3864614542262 30 
37 45 13 53 21 61 29 
36 44 12 52 20 60 28 
35 43 11 51 19 59 27 
34 42 10 50 18 58 26 
33 41 49 17 57 25 

也就是说,该变换的输出的第一位是输入的第40位,第二位是输入的8位,一直到将输入的第25位作为输出的最后一位。

比如,我们使用上述方法得到了第16轮的左右两个区块:

L16 = 0100 0011 0100 0010 0011 0010 0011 0100 
R16 = 0000 1010 0100 1100 1101 1001 1001 0101

我们将两个区块调换位置,然后执行最终变换:

R16L16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100
IP-1 = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101

写成16进制得到:

85E813540F0AB405

这就是明文M=0123456789ABCDEF的密文:85E813540F0AB405

解密就是加密的反过程,执行上述步骤,只不过在那16轮迭代中,调转左右子秘钥的位置而已。

转载于:https://www.cnblogs.com/LoganChen/p/11432092.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/630058
推荐阅读
相关标签
  

闽ICP备14008679号