赞
踩
GPTQ 算法由 Frantar 等人 (2023) 提出,它从 OBQ 方法中汲取灵感,但进行了重大改进,可以将其扩展到(非常)大型的语言模型。
OBQ 方法选择权重按特定顺序进行量化,该顺序由增加的额外误差最小决定。然而,GPTQ 观察到,对于大型模型,以任何固定顺序量化权重都可以获得同样好的效果。这是因为即使某些权重可能单独引入更多误差,但它们会在流程后期量化,此时剩下的其他权重很少,这可能会增加误差。所以顺序并不像我们想象的那么重要。
基于这一见解,GPTQ 旨在以相同的顺序量化矩阵所有行的所有权重。这使得该过程更快,因为某些计算只需对每列进行一次,而不是对每个权重进行一次。
这种方案速度不快,因为它需要更新一个巨大的矩阵,而每个块的计算量却很少。这种类型的操作无法充分利用 GPU 的计算能力,并且会因内存限制(内存吞吐量瓶颈)而变慢。
为了解决这个问题,GPTQ 引入了“惰性批量更新”。事实证明,列的最终量化仅受对该列更新的影响,而不会受后续列的影响。因此,GPTQ 可以一次将算法应用于一批列(例如 128 列),仅更新这些列和矩阵的相应块。在处理完一个块后,该算法会对整个矩阵执行全局更新。
然而,还有一个问题需要解决。当算法扩展到非常大的模型时,数值不准确可能会成为一个问题。具体来说,重复应用某一操作可能会累积数值误差。
为了解决这个问题,GPTQ 使用了Cholesky 分解,这是一种解决某些数学问题的数值稳定方法。它涉及使用 Cholesky 方法从矩阵中预先计算一些所需信息。这种方法与轻微的“阻尼”(在矩阵的对角元素中添加一个小常数)相结合,有助于算法避免数值问题。
完整的算法可以概括为几个步骤:
GPTQ 算法首先对 Hessian 逆进行 Cholesky 分解(该矩阵有助于决定如何调整权重)
然后它循环运行,一次处理一批列。
对于批次中的每一列,它量化权重,计算误差,并相应地更新块中的权重。
处理批次后,它会根据块的错误更新所有剩余的权重。
# 导入随机数模块
import random
# 导入AutoGPTQ库中的类,用于量化模型
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
# 导入load_dataset函数,用于加载数据集
from datasets import load_dataset
# 导入PyTorch库
import torch
# 导入transformers库中的AutoTokenizer,用于文本编码
from transformers import AutoTokenizer
# 定义基础模型名称和量化后模型的输出目录
model_id = "gpt2" # 使用gpt2作为基础模型
out_dir = model_id + "-GPTQ" # 输出目录为模型ID加上"-GPTQ"
# 加载量化配置、模型和分词器
# 量化配置设置:4位量化,组大小为128,阻尼百分比为0.01,不使用激活函数量化
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
damp_percent=0.01,
desc_act=False,
)
# 从预训练模型加载并应用量化配置
model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config)
# 加载与模型匹配的分词器
tokenizer = AutoTokenizer.from_pretrained(model_id)
# 加载数据并进行分词处理
# 使用allenai的c4数据集,限制加载的数据文件和数据条数
n_samples = 1024
data = load_dataset("allenai/c4", data_files="en/c4-train.00001-of-01024.json.gz", split=f"train[:{n_samples*5}]")
# 将文本数据连接并使用分词器进行编码
tokenized_data = tokenizer("\n\n".join(data['text']), return_tensors='pt')
# 格式化分词后的样本
# 初始化一个空列表来存储格式化后的样本
examples_ids = []
# 遍历以创建n_samples个样本
for _ in range(n_samples):
# 随机选择起始索引,确保序列长度不超过模型最大长度
i = random.randint(0, tokenized_data.input_ids.shape[1] - tokenizer.model_max_length - 1)
j = i + tokenizer.model_max_length # 计算结束索引
# 提取输入ID和创建相应的注意力掩码
input_ids = tokenized_data.input_ids[:, i:j]
attention_mask = torch.ones_like(input_ids) # 注意力掩码全为1,表示所有token都需要被模型注意
# 将输入ID和注意力掩码添加到样本列表中
examples_ids.append({'input_ids': input_ids, 'attention_mask': attention_mask})
# 计时开始
%%time
# 使用GPTQ进行量化
# 使用前面准备的样本、指定的batch_size和启用Triton优化进行量化
model.quantize(
examples_ids,
batch_size=1,
use_triton=True,
)
# 保存量化后的模型和分词器到指定目录
# 使用safetensors格式保存模型权重,该格式更安全且更易于分享
model.save_quantized(out_dir, use_safetensors=True)
tokenizer.save_pretrained(out_dir) # 保存分词器到同一目录以便之后使用
# 定义基础模型名称和量化后模型的输出目录
model_id = "gpt2" # 使用gpt2作为基础模型
out_dir = model_id + "-GPTQ" # 输出目录为模型ID加上"-GPTQ"
# 设定设备为CUDA(如果可用)否则使用CPU
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# 这行代码检查是否有GPU可以使用,如果有,则在GPU上运行后续的模型操作,否则在CPU上运行。
# 重新加载模型和分词器
model = AutoGPTQForCausalLM.from_quantized(
out_dir, # 指定之前保存的量化模型目录
device=device, # 使用之前设定的设备
use_triton=True, # 启用Triton加速(如果安装并配置了Triton推理服务器)
use_safetensors=True, # 指定使用safetensors格式加载模型权重
)
# 从量化模型的保存目录加载分词器
tokenizer = AutoTokenizer.from_pretrained(out_dir)
# 导入transformers库中的pipeline功能
from transformers import pipeline
# 创建一个文本生成的pipeline,使用刚加载的模型和分词器
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# 使用pipeline生成文本,输入为"I have a dream",开启采样以增加多样性,限制生成的最大长度为50
result = generator("I have a dream ", do_sample=True, max_length=50)[0]['generated_text']
# 打印生成的文本结果
print(result)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。