当前位置:   article > 正文

排序算法详解(java版本)_java版本的排序算法

java版本的排序算法

排序算法的介绍

排序的分类:

在这里插入图片描述
相关术语:
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
内排序:所有排序操作都在内存中完成;
外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;

时间复杂度: 一个算法执行所耗费的时间。
空间复杂度:运行完一个程序所需内存的大小。
n: 数据规模
k: “桶”的个数
In-place: 不占用额外内存
Out-place: 占用额外内存

(1)时间复杂度为O(n^2)的排序算法:

			冒泡排序(交换排序)
			选择排序
			插入排序
			希尔排序(性能略优于O(n^2),但是又比不上O(nLongn)) (插入排序)
  • 1
  • 2
  • 3
  • 4

(2)时间复杂度为O(nLogn)的排序算法:

		快速排序 (交换排序)--> 最坏时间复杂度为O(n^2)
		归并排序
		堆排序 (选择排序)
  • 1
  • 2
  • 3

(3)时间复杂度为线性的排序算法:

		计数排序
		桶排序
		基数排序(是桶排序的扩展)
  • 1
  • 2
  • 3

(4)按照内部排序外部排序分类!

按照内部排序外部排序分类!!

冒泡排序的实现

public static void main(String[] args){
		int[] array = new int[]{2,5,14,6,5,8,4};
		sort(array);
		System.out.println(Arrays.toString(array));
	}
	public static void sort(int array[]){
		//第一趟排序,就是将最大的数放在最后
		int temp = 0;
		for(int i = 0;i < array.length-1; i++ ){
			boolean isSorted = true;
				for(int j = 0;j < array.lenhth-1-i;j++){
					if(array[j] > array[j + 1]){
						temp = array[j];
						array[i] = array[j + 1];
						array[j + 1] = temp;
			//因为有元素交换,所以不是有序的,标记变为false
						isSorted = false;
					}
				}
			if(isSorded){
				break;
			}
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  冒泡排序的特点:
  (1)一共进行 数组的长度-1次大的循环
  (2)每一趟排序的次数在减少
   (3) 我们发现在某趟排序中,没有发生交换,可以提前结束排序
  • 1
  • 2
  • 3
  • 4

选择排序的实现

public static void sort(int[] array){
		for(int i = 0;i < array.length - 1;i++){
			int minIndex = i;
			int min = array[i];
			for(int j = i + 1;j < array.length;j++){
				if(min  > array[i]){//说明假定的最小值,并不是最小值
					min = array[i];//重置
					minIndex = j;//充值
				}
			}
			//将最小值放在arr[0]位置,也就是交换
			if(minIndex != i){
				arr[minIndex] = arr[i];
				arr[i] = min;
			}
		}	
}


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

插入排序的实现

//插入的数比较小的时候,后移的次数明显增多,对效率影响较大
public static void insertSort(int[] arr){
	for(int i = 1;i < arr.length;i++){
		//定义待插入的数
		int insertVal = arr[i];
		int insertIndex = i-1//arr[i ]前面数字的下标
		//给insertVal找到插入的位置
		//md:
		//1.insertIndex >= 0 保证在给insertVal找插入的位置,不越界
		//2.insertVal < arr[insertIndex] 待插入的数字,还没有找到插入的位置
		//3.就需要将arr[insertIndex]后移
		while(insertIndex >= 0 && insertVal < arr[insertIndex]){
			arr[insertIndex + 1] = arr[insertIndex];
			insertIndex--;
		}
		//当退出while循环的时候,说明插入的位置找到,insertIndex + 1
		arr[insertIndex + 1] = insertVal;
	}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

希尔排序实现

希尔排序法基本思想

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减到1的时候,整个文件恰好被分为一组,算法便终止。
  • 1
//交换法
  public static void shellSort(int[] arr){
  	int temp = 0;
	for(int gap = arr.length/2 ; gap > 0; gap /= 2){
		for(in i =gap;i < arr.length;i++){
		//遍历各组中的元素,步长为gap,共gap组,
			for(int j = i-5;j  >= 0; j-=5){
				if(arr[j] > arr[j + 5]){
					temp = arr[i];
					arr[j] = arr[j + 5];
					arr[j + 5] = temp;
				}
			}
		}
	}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
//移位法
  public static void shellSort(int[] arr){
	for(int gap = arr.length/2 ; gap > 0; gap /= 2){
	//从第gap个元素,逐个对其所在的组进行直接插入排序
		for(in i =gap;i < arr.length;i++){
			int j = i;
			int temp = arr[j];
			if(arr[j] < arr[j - gap]){
				while(j - gap >= 0 && temp < arr[j - gap]){
					//移动
					arr[j] = arr[j - gap]
					j -= gap;
				}
			}
			//当退出while吼,就给temp找到插入的位置
			arr[j] = temp;
		}
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

快速排序的实现

快速排序的思想:

快速排序实在冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分为两部分,其中一部分的数据都比
另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以
递归进行,以此达到整个数据变成有序的。
  • 1
  • 2
  • 3
//quickSort
public static void quickSort(int[] arr,int left,int right){
	int l = left;
	int r = right;
	int pivot = arr[(left + right) / 2]
	int temp= 0//循环的目的是让比pivot小的放在左边,比pivot大的放在右边,第一次分割
	while( l < r){
		//在pivot的左边一直找,找到大于等于pivot的值,才退出
		while(arr[l] < pivot){
			l += 1;
		}
		while(arr[r] > pivot){
			r -= 1;
		}
		//说明pivot左右两边的值已经按照左边小于pivot,右面大于pivot
		if( l >= r){
			break;
		}
		//交换
		temp = arr[l];
		arr[l] = arr[r];
		arr[r] = temp;
		//交换完之后,发现arr[l] == pivot  r-- --> 前移
		if(arr[l] == pivot){
			r -= 1;
		} 
		//交换完之后,发现arr[r] == pivot  l++ --> 后移
		if(arr[r] == pivot){
			l += 1;
		} 
	}
	//如果 l==r 必须l++,r--否则为栈溢出
	if(l == r){
		l += 1;
		r- = 1;
	}
	//左递归
	if(left < r){
		quickSort(arr,left,r);
	}
	//右递归
	if(right > 1){
		quickSort(arr,l,rgiht);
	}
}


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

归并排序的实现

分治思想的体现
合并次数n-1次
  • 1
  • 2
public class MergeSort{
	public static void main(String[] args) {
		int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 }; 
		int temp[] = new int[arr.length]; //归并排序需要一个额外空间
 		mergeSort(arr, 0, arr.length - 1, temp);
 		System.out.println("归并排序后=" + Arrays.toString(arr));
	}
//分+合方法
	public static void mergeSort(int[] arr, int left, int right, int[] temp) {
		if(left < right) {
			int mid = (left + right) / 2; //中间索引
			//向左递归进行分解
			mergeSort(arr, left, mid, temp);
			//向右递归进行分解
			mergeSort(arr, mid + 1, right, temp);
			//合并
			merge(arr, left, mid, right, temp);
			
		}
	}
//合并的方法
	/**
	 * 
	 * @param arr 排序的原始数组
	 * @param left 左边有序序列的初始索引
	 * @param mid 中间索引
	 * @param right 右边索引
	 * @param temp 做中转的数组
	 */
	public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
		
		int i = left; // 初始化i, 左边有序序列的初始索引
		int j = mid + 1; //初始化j, 右边有序序列的初始索引
		int t = 0; // 指向temp数组的当前索引
		
		//(一)
		//先把左右两边(有序)的数据按照规则填充到temp数组
		//直到左右两边的有序序列,有一边处理完毕为止
		while (i <= mid && j <= right) {//继续
			//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
			//即将左边的当前元素,填充到 temp数组 
			//然后 t++, i++
			if(arr[i] <= arr[j]) {
				temp[t] = arr[i];
				t += 1;
				i += 1;
			} else { //反之,将右边有序序列的当前元素,填充到temp数组
				temp[t] = arr[j];
				t += 1;
				j += 1;
			}
		}
		//(二)
		//把有剩余数据的一边的数据依次全部填充到temp
		while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[i];
			t += 1;
			i += 1;	
		}	
		while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
			temp[t] = arr[j];
			t += 1;
			j += 1;	
		}
		
		//(三)
		//将temp数组的元素拷贝到arr
		//注意,并不是每次都拷贝所有
		t = 0;
		int tempLeft = left; // 
		//第一次合并 tempLeft = 0 , right = 1 //  tempLeft = 2  right = 3 // tL=0 ri=3
		//最后一次 tempLeft = 0  right = 7
		while(tempLeft <= right) { 
			arr[tempLeft] = temp[t];
			t += 1;
			tempLeft += 1;
		}	
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79

基数排序

基数排序基本思想

将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
eg:
将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序

第1轮排序 [按照个位排序]:
说明: 事先准备10个数组(10个桶), 0-9 分别对应 位数的 0-9
(1) 将 各个数,按照个位大小 放入到 对应的 各个数组中
(2) 然后从 0-9 个数组/桶,依次,按照加入元素的先后顺序取出
在这里插入图片描述
第2轮排序 [按照十位排序]

(1) 将 各个数,按照十位大小 放入到 对应的 各个数组中
(2) 然后从 0-9 个数组/桶,依次,按照加入元素的先后顺序取出
在这里插入图片描述

第3轮排序 [按照百位排序]

(1) 将 各个数,按照百位大小 放入到 对应的 各个数组中
(2) 然后从 0-9 个数组/桶,依次,按照加入元素的先后顺序取出
在这里插入图片描述
桶排序的说明:
1.基数排序是对传统桶排序的扩展,速度很快.
2.基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 。
3.基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的]
有负数的数组,我们不用基数排序来进行排序。

public class RadixSort {

	public static void main(String[] args) {
		int arr[] = { 53, 3, 542, 748, 14, 214};
		radixSort(arr);
		System.out.println("基数排序后 " + Arrays.toString(arr));
	}

	//基数排序方法
	public static void radixSort(int[] arr) {
		
		//根据前面的推导过程,我们可以得到最终的基数排序代码
		
		//1. 得到数组中最大的数的位数
		int max = arr[0]; //假设第一数就是最大数
		for(int i = 1; i < arr.length; i++) {
			if (arr[i] > max) {
				max = arr[i];
			}
		}
		//得到最大数是几位数
		int maxLength = (max + "").length();
		
		
		//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
		//说明
		//1. 二维数组包含10个一维数组
		//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
		//3. 名明确,基数排序是使用空间换时间的经典算法
		int[][] bucket = new int[10][arr.length];
		
		//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
		//可以这里理解
		//比如:bucketElementCounts[0] , 记录的就是  bucket[0] 桶的放入数据个数
		int[] bucketElementCounts = new int[10];
		
		
		//这里我们使用循环将代码处理
		
		for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
			//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
			for(int j = 0; j < arr.length; j++) {
				//取出每个元素的对应位的值
				int digitOfElement = arr[j] / n % 10;
				//放入到对应的桶中
				bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
				bucketElementCounts[digitOfElement]++;
			}
			//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
			int index = 0;
			//遍历每一桶,并将桶中是数据,放入到原数组
			for(int k = 0; k < bucketElementCounts.length; k++) {
				//如果桶中,有数据,我们才放入到原数组
				if(bucketElementCounts[k] != 0) {
					//循环该桶即第k个桶(即第k个一维数组), 放入
					for(int l = 0; l < bucketElementCounts[k]; l++) {
						//取出元素放入到arr
						arr[index++] = bucket[k][l];
					}
				}
				//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
				bucketElementCounts[k] = 0;
				
			}
			//System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
			
		}
		
		/*
		
		//第1轮(针对每个元素的个位进行排序处理)
		for(int j = 0; j < arr.length; j++) {
			//取出每个元素的个位的值
			int digitOfElement = arr[j] / 1 % 10;
			//放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		int index = 0;
		//遍历每一桶,并将桶中是数据,放入到原数组
		for(int k = 0; k < bucketElementCounts.length; k++) {
			//如果桶中,有数据,我们才放入到原数组
			if(bucketElementCounts[k] != 0) {
				//循环该桶即第k个桶(即第k个一维数组), 放入
				for(int l = 0; l < bucketElementCounts[k]; l++) {
					//取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
			
		}
		System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		
		//==========================================
		
		//第2轮(针对每个元素的十位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的十位的值
			int digitOfElement = arr[j] / 10  % 10; //748 / 10 => 74 % 10 => 4
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		
		//第3轮(针对每个元素的百位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的百位的值
			int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); */
		
	}
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/67391
推荐阅读
相关标签
  

闽ICP备14008679号