当前位置:   article > 正文

从零开始的图像语义分割:FCN快速复现教程(Pytorch+CityScapes数据集)_fcn复现

fcn复现


前言

摆了两周,突然觉得不能一直再颓废下去了,应该利用好时间,并且上个月就读了一些经典的图像分割论文比如FCN、UNet和Mask R-CNN,但仅仅只是读了论文并且大概了解了图像分割是在做什么任务的,于是今天就拉动手复现一下,因为只有代码运行起来了,才能进行接下来的代码阅读以及其他改进迁移等后续工作。
本文着重在于代码的复现,其他相关知识会涉及得较少,需要读者自行了解。
看完这篇文章,您将收获一个完整的图像分割项目(一个通用的图像分割数据集及一份可正常执行的代码)。

一、图像分割开山之作FCN


图来自FCN,Jonathan Long,Evan Shelhamer,Trevor Darrell CVPR2015

图像分割可以大致为实例分割、语义分割,其中语义分割(Semantic Segmentation)是对图像中每一个像素点进行分类,确定每个点的类别(如属于背景、人或车等),从而进行区域划分。目前,语义分割已经被广泛应用于自动驾驶、无人机落点判定等场景中。
FCN全程Fully Convolutional Networks,最早发表于CVPR2015,原论文链接如下:
FCN论文链接:https://arxiv.org/abs/1411.4038
正如其名称全卷积网络,实则是将早年的网络比如VGG的全连接层代替为卷积层,这样做的目的是让模型可以输入不同尺寸的图像,因为全连接层一旦被创建输入输出维度都是固定的,追根溯源就是输入图片的尺寸固定,并且语义分割是像素级别操作,替换为卷积层也更加合理(卷积操作就是像素级别,这些都是后话了)。
更具体的学习视频可以跳转到b站FCN网络结构详解(语义分割)


二、代码及数据集获取

1.源项目代码

在这里插入图片描述
进入FCN论文链接,点击Code&Data再进入Community Code跳转到paperwithcode网站。
在这里插入图片描述
很神奇地是会发现有两个FCN的检索链接,本文所需要的pytorch项目代码在红框这个链接中
在这里插入图片描述
Star最高的就是本文所需项目,这个大佬还有自己的个人网页,而且号称是FCN最简单的实现,我可以作证此言不虚,的确是众多代码中最简洁明朗的。

2.CityScapes数据集

CityScapes数据集官方下载链接:CityScapes Download
然而下载这个数据集需要注册账号,而且需要的是教育邮箱,可能是按照是否带edu.cn域名判断的吧,本人使用学校邮箱成功注册下载了数据集。读者若有不便可以上网其他途径获取或淘宝买个账号。

在这里插入图片描述
只需下载前3个数据集即可,gtFine_trainvaltest是精确标注(最主要最关键部分),gtCoarse是粗略标注,leftimg8bit_trainvaltest是原图。虽然模型训练的时候只需要用到gtFine但是因为接下来还需要预处理数据集,因此要将三个数据集下载好,才能执行官方给的预处理代码。
重构数据集
在这里插入图片描述
将三个zip解压然后新建一个文件夹命名为CityScapes,然后将三个解压文件里的内容按上图目录放置好,为数据集预处理做准备。


三、代码复现

1.数据预处理

这里需要先下载官方的脚本:cityscapesScripts
接下来对其中的一些地方进行修改,最重要的两个文件为项目下cityscapesscripts\helpers\labels.py和cityscapesscripts\preparation\createTrainIdLabelImgs.py。

在这里插入图片描述
蓝色框为原本的代码,直接注释掉添加红框处代码,即指定自己本地的数据集目录,比如我就将CityScapes放到了E盘的dataset目录下。
在这里插入图片描述
然后是在label.py文件里按照训练的需要更改trainid,255为不被模型所需要的id,因为FCN中为19类+背景板,所以为20类,刚好符合所以不需要更改label文件中任何内容。
在这里插入图片描述
最后运行createTrainIdLabelImgs.py,如果报错的话大概率是因为缺少上图蓝框所示的库,将其直接注释掉就可以了。

2.代码修改

之所以需要修改是因为原本的代码里面数据预处理那块太慢了,Cityscapes_utils.py要将trainId写入npy文件,运行速度极慢,这也是先前用官方预处理脚本cityscapesScripts来预处理的原因,预处理的目的其实也只是生成TrainIds的mask图片,和labelIds的png图片是同理的,只是每个像素所对应类别按照label.py里面的label表进行改变。
其实pytorch官方有给出加载CityScapes的数据集代码,但其直接拿来用并不能满足我们要求,所以需要修改一下,就原项目代码的Cityscapes_loader.py和torchvision.datasets.Cityscapes的代码结合,得到如下可执行代码。读者只需用其替换train.py文件即可。

# -*- coding: utf-8 -*-
# Author: Reganzhx

from __future__ import print_function

import random
from tqdm import tqdm # 由于训练缓慢,添加进度条方便观察
import imageio
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torch.utils.data import DataLoader

from fcn import VGGNet, FCN32s, FCN16s, FCN8s, FCNs
# from Cityscapes_loader import CityScapesDataset
from CamVid_loader import CamVidDataset
from torchvision.datasets import Cityscapes
from matplotlib import pyplot as plt
import numpy as np
import time
import sys
import os
from PIL import Image


class CityScapesDataset(Cityscapes):
    def __init__(self, root: str,
                 split: str = "train",
                 mode: str = "fine",
                 target_type="semantic",
                 transform=None,
                 target_transform=None,
                 transforms=None):
        super(CityScapesDataset, self).__init__(root,
                                                split,
                                                mode,
                                                target_type,
                                                transform,
                                                target_transform,
                                                transforms)
        self.means = np.array([103.939, 116.779, 123.68]) / 255.
        self.n_class = 20
        self.new_h = 512 # 数据集图片过大,需要剪裁
        self.new_w = 1024

    def __getitem__(self, index):
        img = imageio.imread(self.images[index], pilmode='RGB')
        targets = []
        for i, t in enumerate(self.target_type):
            if t == "polygon":
                target = self._load_json(self.targets[index][i])
            else:
                target = imageio.imread(self.targets[index][i])
            targets.append(target)

        target = tuple(targets) if len(targets) > 1 else targets[0] # 针对多目标 可不关注
        h, w, _ = img.shape
        top = random.randint(0, h - self.new_h)
        left = random.randint(0, w - self.new_w)
        img = img[top:top + self.new_h, left:left + self.new_w]
        label = target[top:top + self.new_h, left:left + self.new_w]

        # reduce mean
        img = img[:, :, ::-1]  # switch to BGR
        img = np.transpose(img, (2, 0, 1)) / 255.
        img[0] -= self.means[0]
        img[1] -= self.means[1]
        img[2] -= self.means[2]

        # convert to tensor
        img = torch.from_numpy(img.copy()).float()
        label = torch.from_numpy(label.copy()).long()

        # create one-hot encoding
        h, w = label.size()
        target = torch.zeros(self.n_class, h, w)
        for c in range(self.n_class):
            target[c][label == c] = 1

        sample = {'X': img, 'Y': target, 'l': label}

        return sample

    def __len__(self) -> int:
        return len(self.images)

    def _get_target_suffix(self, mode: str, target_type: str) -> str:
        if target_type == "instance":
            return f"{mode}_instanceIds.png"
        elif target_type == "semantic": # 让其指向预处理好的target图片
            return f"{mode}_labelTrainIds.png"
        elif target_type == "color":
            return f"{mode}_color.png"
        else:
            return f"{mode}_polygons.json"


n_class = 20
batch_size = 2 # 根据测试,1batch需要2G显存,请按实际设置
epochs = 500
lr = 1e-4
momentum = 0
w_decay = 1e-5
step_size = 50
gamma = 0.5
configs = "FCNs-BCEWithLogits_batch{}_epoch{}_RMSprop_scheduler-step{}-gamma{}_lr{}_momentum{}_w_decay{}".format(
    batch_size, epochs, step_size, gamma, lr, momentum, w_decay)
print("Configs:", configs)

# create dir for model
model_dir = "models"
if not os.path.exists(model_dir):
    os.makedirs(model_dir)
model_path = os.path.join(model_dir, configs)

use_gpu = torch.cuda.is_available()
num_gpu = list(range(torch.cuda.device_count()))

# 自行更改root
train_data = CityScapesDataset(root='E:/datasets/CityScapes', split='train', mode='fine',
                               target_type='semantic')

train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)

val_data = CityScapesDataset(root='E:/datasets/CityScapes', split='val', mode='fine',
                             target_type='semantic')

val_loader = DataLoader(val_data, batch_size=1)

vgg_model = VGGNet(requires_grad=True, remove_fc=True)
fcn_model = FCNs(pretrained_net=vgg_model, n_class=n_class)

if use_gpu:
    ts = time.time()
    vgg_model = vgg_model.cuda()
    fcn_model = fcn_model.cuda()
    fcn_model = nn.DataParallel(fcn_model, device_ids=num_gpu)
    print("Finish cuda loading, time elapsed {}".format(time.time() - ts))

criterion = nn.BCEWithLogitsLoss()
optimizer = optim.RMSprop(fcn_model.parameters(), lr=lr, momentum=momentum, weight_decay=w_decay)
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size,
                                gamma=gamma)  # decay LR by a factor of 0.5 every 30 epochs

# create dir for score
score_dir = os.path.join("scores", configs)
if not os.path.exists(score_dir):
    os.makedirs(score_dir)
IU_scores = np.zeros((epochs, n_class))
pixel_scores = np.zeros(epochs)


def train():
    for epoch in range(epochs):
        scheduler.step()

        ts = time.time()
        for iter, batch in enumerate(tqdm(train_loader)):
            optimizer.zero_grad()

            if use_gpu:
                inputs = Variable(batch['X'].cuda())
                labels = Variable(batch['Y'].cuda())
            else:
                inputs, labels = Variable(batch['X']), Variable(batch['Y'])

            outputs = fcn_model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            if iter % 10 == 0:
                print("epoch{}, iter{}, loss: {}".format(epoch, iter, loss.item()))

        print("Finish epoch {}, time elapsed {}".format(epoch, time.time() - ts))
        torch.save(fcn_model, model_path)
        val(epoch)


def val(epoch):
    fcn_model.eval()
    total_ious = []
    pixel_accs = []
    for iter, batch in enumerate(val_loader):
        if use_gpu:
            inputs = Variable(batch['X'].cuda())
        else:
            inputs = Variable(batch['X'])

        output = fcn_model(inputs)
        output = output.data.cpu().numpy()

        N, _, h, w = output.shape
        pred = output.transpose(0, 2, 3, 1).reshape(-1, n_class).argmax(axis=1).reshape(N, h, w)

        target = batch['l'].cpu().numpy().reshape(N, h, w)
        for p, t in zip(pred, target):
            total_ious.append(iou(p, t))
            pixel_accs.append(pixel_acc(p, t))

    # Calculate average IoU
    total_ious = np.array(total_ious).T  # n_class * val_len
    ious = np.nanmean(total_ious, axis=1)
    pixel_accs = np.array(pixel_accs).mean()
    print("epoch{}, pix_acc: {}, meanIoU: {}, IoUs: {}".format(epoch, pixel_accs, np.nanmean(ious), ious))
    IU_scores[epoch] = ious
    np.save(os.path.join(score_dir, "meanIU"), IU_scores)
    pixel_scores[epoch] = pixel_accs
    np.save(os.path.join(score_dir, "meanPixel"), pixel_scores)


# borrow functions and modify it from https://github.com/Kaixhin/FCN-semantic-segmentation/blob/master/main.py
# Calculates class intersections over unions
def iou(pred, target):
    ious = []
    for cls in range(n_class):
        pred_inds = pred == cls
        target_inds = target == cls
        intersection = pred_inds[target_inds].sum()
        union = pred_inds.sum() + target_inds.sum() - intersection
        if union == 0:
            ious.append(float('nan'))  # if there is no ground truth, do not include in evaluation
        else:
            ious.append(float(intersection) / max(union, 1))
        # print("cls", cls, pred_inds.sum(), target_inds.sum(), intersection, float(intersection) / max(union, 1))
    return ious


def pixel_acc(pred, target):
    correct = (pred == target).sum()
    total = (target == target).sum()
    return correct / total


if __name__ == "__main__":
    val(0)  # show the accuracy before training
    train()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240

3.运行结果

分别在自己办公电脑1030显卡(显存4G)和3060显卡(显存12G)上测试,根据两台电脑运行上看每增加1batch就需要消耗2G显存,因为3060上最大只能将batch size设置为6。3060显卡上1个epoch需要8min,也就是说训练完500epoch需要三天时间,可见图像分割真的是极其消耗资源。而1030上1代竟然耗时2h20min,所以按照时间来看首选设备是3090,这样才可能在一天之内进行完一次完整500epoch训练。
在这里插入图片描述
第1轮迭代后pixel accuracy就有75%,目前到第25轮pixel accuracy达到85%,随着epoch数增加,pixel acc也越来越高,希望其最终能突破90%,原论文中可是达到96%pixel准确率。
在这里插入图片描述
下图为3060上训练150epoch的结果,每5epoch进行一次val评估。最后使用matplotlib绘制如下曲线,pixel_acc和meanIoU的获取请读者自行额外编写代码获得,此处仅提供绘图代码。
第135epoch取得最高pixel accuracy=0.8766716842651368,meanIoU=0.3268041800950261

在这里插入图片描述

from matplotlib import pyplot as plt

x=[i for i in range(0,151,5)] #横坐标
# 此处给出我的数据,浮点数都用round函数取到小数点后7位
pix_acc_list=[0.7520696,0.7918097,0.6557526,0.8310604,0.8453417,0.8509236,0.8534471,0.8378322,0.8489639,0.8563263,0.8538324,0.8572157,0.860767,0.8660216,0.8631711,0.8631837,0.8670352,0.8597714,0.8689239,0.8647407,0.8698506,0.8712046,0.8719427,0.8722804,0.8732114,0.871852,0.8714358,0.8766717,0.86854,0.8661136,0.8761132]
meanIoU_list=[0.1333057,0.185366,0.1383637,0.2432535,0.2634509,0.2799635,0.2831553,0.2642947,0.2924905,0.3027259,0.3123738,0.2976701,0.3113799,0.3239229,0.3163488,0.3170467,0.3246953,0.3236825,0.3242375,0.3262411,0.3355112,0.3285704,0.3388148,0.328427,0.3378653,0.3385619,0.3358321,0.3268042,0.3297385,0.3347885,0.3379351]
plt.figure()
plt.plot(x,pix_acc_list,color='blue',label='pixel acc')
plt.plot(x,meanIoU_list,color='red',label='meanIoU')

plt.xticks(fontsize=16)
plt.yticks(fontsize=16)

plt.xlabel('Epoch',fontsize=20)
plt.ylabel('Score',fontsize=20)
plt.legend(fontsize=16)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

总结

希望您读到这里能有所收获,本文所参考资料也在文末给出,大家可以查阅获取更多知识细节,后续还将不断完善本文内容,敬请期待……


参考网站

https://bbs.huaweicloud.com/blogs/306716
https://developer.aliyun.com/article/797607
https://www.cnblogs.com/dotman/p/cityscapes_dataset_tips.html
https://zhuanlan.zhihu.com/p/147195575
https://codeantenna.com/a/uD5sJceaS1
https://blog.csdn.net/zz2230633069/article/details/84591532
https://www.zhihu.com/question/276325769/answer/2418207657
https://blog.csdn.net/zz2230633069/article/details/84668984
https://blog.csdn.net/yumaomi/article/details/124847721

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/677828
推荐阅读
相关标签
  

闽ICP备14008679号