当前位置:   article > 正文

数据结构二叉树的顺序存储及基本操作_任务描述 本关任务:以顺序结构存储二叉树,编写前序、中序、后序及层次顺序遍历二

任务描述 本关任务:以顺序结构存储二叉树,编写前序、中序、后序及层次顺序遍历二

2022.11.19

二叉树的顺序存储及基本操作


任务描述

本关任务:以顺序结构存储二叉树,编写前序、中序、后序及层次顺序遍历二叉树的算法,并计算二叉树深度、所有结点总数。

相关知识

回去看题吧太长了。二叉树的顺序存储及基本操作

编程要求

在这里插入图片描述

测试说明

平台会对你编写的代码进行测试:

测试输入:ABCDEF###G##H

预期输出
按先序遍历的结果为:ABDEGCFH
按中序遍历的结果为:DBGEAFHC
按后序遍历的结果为:DGEBHFCA
按层序遍历的遍历结果为:ABCDEFGH
该二叉树的高度为:4

开始你的任务吧,祝你成功!

C/C++代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
using namespace std;

#define OK  1
#define ERROR 0

#define MAX_TREE_SIZE  100

typedef  char TElemType ;

typedef  TElemType  SqBiTree[MAX_TREE_SIZE];

TElemType Nil='#';

void input(TElemType &x)	 // 函数变量
{
	scanf("%c",&x);
}

void visit(TElemType x)	 // 函数变量
{
	printf("%c",x);
}

void InitBiTree(SqBiTree &T)
{ // 构造空二叉树T。因为T是数组名,故不需要&
	int i;
	for(i=0;i<MAX_TREE_SIZE;i++)
		T[i]=Nil; // 初值为空(Nil在主程中定义)
}


void CreateBiTree(SqBiTree &T)
{ // 按层序次序输入二叉树中结点的值(字符型或整型), 构造顺序存储的二叉树T
	/********** Begin **********/ 
	int i=1;
	scanf("%s",T+1);
	while(T[i] != '\0')
		i++;
	T[i]='#';
	/********** End **********/
}

int BiTreeEmpty(SqBiTree T)
{ // 初始条件:二叉树T存在。操作结果:若T为空二叉树,则返回TRUE,否则FALSE
	if(T[1]==Nil) // 根结点为空,则树空
		return 1;
	else
		return 0;
}

int BiTreeDepth(SqBiTree T)
{ // 初始条件:二叉树T存在。操作结果:返回T的深度
	/********** Begin **********/ 
	int i=MAX_TREE_SIZE-1,j;
	while(T[i]=='#')
		i--;
	j=i;
	int dep=0;
	do{
		dep++;
		j=j/2;
	}while(j>=1);
	return dep;
	
	/********** End **********/
}
void PreTraverse(SqBiTree T,int e)
{ // PreOrderTraverse()调用
	/********** Begin **********/ 
	if(T[e] != '#'){
		visit(T[e]);
		PreTraverse(T,2*e);
		PreTraverse(T,2*e+1);
	}
	/********** End **********/
}
void PreOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
{ // 初始条件:二叉树存在,Visit是对结点操作的应用函数
	// 操作结果:先序遍历T,对每个结点调用函数Visit一次且仅一次
	if(!BiTreeEmpty(T)) // 树不空
		PreTraverse(T,1);
	printf("\n");
}

void InTraverse(SqBiTree T,int e)
{ // InOrderTraverse()调用
	/********** Begin **********/ 
	if(T[e] != '#'){
		InTraverse(T,2*e);
		visit(T[e]);
		InTraverse(T,2*e+1);
	}   
	/********** End **********/
}

void InOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
{ // 初始条件:二叉树存在,Visit是对结点操作的应用函数
	// 操作结果:中序遍历T,对每个结点调用函数Visit一次且仅一次
	if(!BiTreeEmpty(T)) // 树不空
		InTraverse(T,1);
	printf("\n");
}

void PostTraverse(SqBiTree T,int e)
{ // PostOrderTraverse()调用
	/********** Begin **********/ 
	if(T[e] != '#'){
		PostTraverse(T,2*e);
		PostTraverse(T,2*e+1);
		visit(T[e]);
	}
	/********** End **********/
}

void PostOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
{ // 初始条件:二叉树T存在,Visit是对结点操作的应用函数
	// 操作结果:后序遍历T,对每个结点调用函数Visit一次且仅一次
	if(!BiTreeEmpty(T)) // 树不空
		PostTraverse(T,1);
	printf("\n");
}

void LevelOrderTraverse(SqBiTree T,void(*Visit)(TElemType))
{ // 层序遍历二叉树
	/********** Begin **********/ 
	int dep=BiTreeDepth(T);
	int tree_max=pow(dep,2)-1;
	for(int i=1;i<tree_max;i++){
		if(T[i]=='#')
			continue;
		visit(T[i]);
	}
	/********** End **********/
}

int main()
{
	TElemType e;
	SqBiTree Bt;
	InitBiTree(Bt);
	CreateBiTree(Bt);    
	printf("按先序遍历的结果为:");
	PreOrderTraverse(Bt,visit);
	printf("按中序遍历的结果为:");
	InOrderTraverse(Bt,visit);
	printf("按后序遍历的结果为:");
	PostOrderTraverse(Bt,visit);
	printf("按层序遍历的遍历结果为:");
	LevelOrderTraverse(Bt,visit);  
	printf("\n该二叉树的高度为:%d",BiTreeDepth(Bt) );
	return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/681184
推荐阅读
相关标签
  

闽ICP备14008679号