赞
踩
When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead.
example 1
# example 1 import numpy as np a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6]]) concate_ab0 = np.concatenate((a, b), axis=0) concate_abt1 = np.concatenate((a, b.T), axis=1) print "a.shape: ", a.shape print a print "b.shape: ", b.shape print b print "concate_ab0.shape: ", concate_ab0.shape print concate_ab0 print "concate_abt1.shape: ", concate_abt1.shape print concate_abt1
=>
- /usr/bin/python2.7 /home/strong/PycharmProjects/crash_course/numpy_function/numpy_concatenate.py
- a.shape: (2, 2)
- [[1 2]
- [3 4]]
- b.shape: (1, 2)
- [[5 6]]
- concate_ab0.shape: (3, 2)
- [[1 2]
- [3 4]
- [5 6]]
- concate_abt1.shape: (2, 3)
- [[1 2 5]
- [3 4 6]]
-
- Process finished with exit code 0
example 2
import numpy as np a = np.array([[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]]) b = np.array([[[13, 14], [15, 16], [17, 18], [19, 20], [21, 22], [23, 24]]]) concate_ab0 = np.concatenate((a, b), axis=0) concate_ab1 = np.concatenate((a, b), axis=1) concate_ab2 = np.concatenate((a, b), axis=2) print "a.shape: ", a.shape print a print "b.shape: ", b.shape print b print "concate_ab0.shape: ", concate_ab0.shape print concate_ab0 print "concate_ab1.shape: ", concate_ab1.shape print concate_ab1 print "concate_ab2.shape: ", concate_ab2.shape print concate_ab2
/usr/bin/python2.7 /home/strong/PycharmProjects/crash_course/numpy_function/numpy_concatenate.py a.shape: (1, 6, 2) [[[ 1 2] [ 3 4] [ 5 6] [ 7 8] [ 9 10] [11 12]]] b.shape: (1, 6, 2) [[[13 14] [15 16] [17 18] [19 20] [21 22] [23 24]]] concate_ab0.shape: (2, 6, 2) [[[ 1 2] [ 3 4] [ 5 6] [ 7 8] [ 9 10] [11 12]] [[13 14] [15 16] [17 18] [19 20] [21 22] [23 24]]] concate_ab1.shape: (1, 12, 2) [[[ 1 2] [ 3 4] [ 5 6] [ 7 8] [ 9 10] [11 12] [13 14] [15 16] [17 18] [19 20] [21 22] [23 24]]] concate_ab2.shape: (1, 6, 4) [[[ 1 2 13 14] [ 3 4 15 16] [ 5 6 17 18] [ 7 8 19 20] [ 9 10 21 22] [11 12 23 24]]] Process finished with exit code 0
example 3
strong@foreverstrong:~$ python Python 2.7.12 (default, Nov 20 2017, 18:23:56) [GCC 5.4.0 20160609] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import numpy as np >>> a = np.ma.arange(3) >>> a masked_array(data = [0 1 2], mask = False, fill_value = 999999) >>> a[1] = np.ma.masked >>> a masked_array(data = [0 -- 2], mask = [False True False], fill_value = 999999) >>> b = np.arange(2, 5) >>> b array([2, 3, 4]) >>> np.concatenate([a, b]) masked_array(data = [0 1 2 2 3 4], mask = False, fill_value = 999999) >>> np.ma.concatenate([a, b]) masked_array(data = [0 -- 2 2 3 4], mask = [False True False False False False], fill_value = 999999) >>> exit() strong@foreverstrong:~$
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。