当前位置:   article > 正文

ncnn param文件及bin模型可视化解析_ncnn param解析参数含义

ncnn param解析参数含义

param文件

内容

第一行【7767517】版本信息

第二行【79 87】layer数及blob数

layer数指:input、Convolution、BatchNorm、ReLU。。。 等数目

 

其实就是打开文件时去除前两行剩余行数 即81-2=79

         blob数指  中间产生结构分支等数目。

bin文件可视化

netron打开

 

param文件与bin模型网络结构对应关系

具体对应关系如Convolution  层:

Convolution   :层类型
Conv_0        :层名称          
1:输入数据结构数量
1:输出数据结构数量
input :网络输入层名
123 :网络输出层名output(部分结构层名由数字代替)
0=64:输出通道数-num_output
1=7 、11=7:卷积核尺寸-kernel_h/kernel_w
2=1、 12=1 :扩大-dilation_h/dilation_w
3=2、 13=2 :步长-stride_h/stride_w
4=3、 14=3 :pad-left /pad-right
15=3、 16=3 :pad-top/pad-bottom
5=0 :bias-term
6=9408(7*7*64*3) 总参数量k*k*in*out

以key=value形式说明,其中1=7,11=7都表示卷积核,第二个key值+10用以区分,步长、pad类似

本质上是卷积层函数参数

如nn.Conv2d函数
初始化参数
def __init__(
    self,
    in_channels: int,
    out_channels: int,
    kernel_size: _size_2_t,
    stride: _size_2_t = 1,
    padding: Union[str, _size_2_t] = 0,
    dilation: _size_2_t = 1,
    groups: int = 1,
    bias: bool = True,
    padding_mode: str = 'zeros',  # TODO: refine this type
    device=None,
    dtype=None
)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/703355
推荐阅读
相关标签
  

闽ICP备14008679号