赞
踩
这就是OpenAI神秘的Q*?斯坦福:语言模型就是Q函数
近日,斯坦福大学一个团队的一项新研究似乎为这一研究方向的潜力提供了佐证,其声称现在已经取得非凡成就的「语言模型不是一个奖励函数,而是一个 Q 函数!」由此发散思维猜想一下,也许 OpenAI 秘密的 Q* 项目或许真的是造就 AGI 的正确方向(或之一)。
论文标题:From r to Q∗: Your Language Model is Secretly a Q-Function
论文地址:https://arxiv.org/pdf/2404.12358.pdf
在对齐大型语言模型(LLM)与人类意图方面,最常用的方法必然是根据人类反馈的强化学习(RLHF)。通过学习基于人类标注的比较的奖励函数,RLHF 能够捕获实践中难以描述的复杂目标。研究者们也在不断探索使用强化学习技术来开发训练和采样模型的新算法。尤其是直接对齐方案(比如直接偏好优化,即 DPO)凭借其简洁性收获了不少拥趸。
直接对齐方法的操作不是学习奖励函数然后使用强化学习,而是在上下文多臂赌博机设置(bandit setting)中使用奖励函数与策略之间的关系来同时优化这两者。类似的思想已经被用在了视觉 - 语言模型和图像生成模型中。
尽管有人说这样的直接对齐方法与使用 PPO 等策略梯度算法的经典 RLHF 方法一样,但它们之间还是存在根本性差异。
举个例子,经典 RLHF 方法是使用终点状态下的稀疏奖励来优化 token 层面的价值函数。另一方面,DPO 则仅在上下文多臂赌博机设置中执行操作,其是将整个响应当成单条臂处理。这是因为,虽然事实上 token 是一次性只生成一个,但研究强化学习的人都知道,密集型奖励是有益的。
尽管直接对齐算法颇引人注意,但目前人们还不清楚它们能否像经典强化学习算法那样用于序列。
为了搞清楚这一点,斯坦福这个团队近日开展了一项研究:在大型语言模型中 token 层面的 MDP 设置中,使用二元偏好反馈的常见形式推导了 DPO。
他们的研究表明,DPO 训练会隐含地学习到一个 token 层面的奖励函数,其中语言模型 logit 定义最优 Q 函数或预期的总未来奖励。然后,他们进一步表明 DPO 有能力在 token MDP 内灵活地建模任意可能的密集奖励函数。
这是什么意思呢?
简单来说,该团队表明可以将 LLM 表示成 Q 函数并且研究表明 DPO 可以将其与隐式的人类奖励对齐(根据贝尔曼方程),即在轨迹上的 DPO 损失。
并且他们证明这种表示可以拟合任何在轨迹上的反馈奖励,包括稀疏信号(如智能体应用)。
实验
他们也进行了实验,论证了三个可能对 AI 社区有用的实用见解。
第一,他们的研究表明尽管 DPO 是作为上下文多臂赌博机而派生出来的,但 DPO 模型的隐含奖励可在每个 token 层面上进行解释。
在实验中,他们以定性方式评估了 DPO 训练的模型是否能够根据轨迹反馈学习 credit assignment。有一个代表性示例是商讨工作就职的场景,图 1 给出了两个答案。
其中左边是正确的基础摘要,右边是经过修改的版本 —— 有更高层的职位和相应更高的工资。他们计算了这两个答案的每个 token 的 DPO 等价的奖励。图 1 中的每个 token 标注的颜色就正比于该奖励。
可以看到,模型能够成功识别对应于错误陈述的 token,同时其它 token 的值依然相差不大,这表明模型可以执行 credit assignment。
此外,还可以看到在第一个错误(250K 工资)的上下文中,模型依然为其余 token 分配了合理的值,并识别出了第二个错误(management position)。这也许表明模型具备「缝合(stitching)」能力,即根据离线数据进行组合泛化的能力。该团队表示,如果事实如此,那么这一发现将有助于强化学习和 RLHF 在 LLM 中的应用。
第二,研究表明对 DPO 模型进行似然搜索类似于现在很多研究中在解码期间搜索奖励函数。也就是说,他们证明在 token 层面的阐述方式下,经典的基于搜索的算法(比如 MCTS)等价于在 DPO 策略上的基于似然的搜索。他们的实验表明,一种简单的波束搜索能为基础 DPO 策略带来有意义的提升,见图 2。
第三,他们确定初始策略和参考分布的选择对于确定训练期间隐性奖励的轨迹非常重要。
从图 3 可以看出,当在 DPO 之前执行 SFT 时,被选取和被拒绝的响应的隐含奖励都会下降,但它们的差距会变大。
当然,该团队最后也表示,这些研究结果还需要更大规模的实验加以检验,他们也给出了一些值得探索的方向,包括使用 DPO 让 LLM 学会基于反馈学习推理、执行多轮对话、充当智能体、生成图像和视频等。
微软发布Phi-3,性能超Llama-3,可手机端运行,数据已成为提升大模型能力的重点。
Llama-3 刚发布没多久,竞争对手就来了,而且是可以在手机上运行的小体量模型。
本周二,微软发布了自研小尺寸模型 Phi-3。
新模型有三个版本,其中 Phi-3 mini 是一个拥有 38 亿参数的语言模型,经过 3.3 万亿 token 的训练,其整体性能在学术基准和内部测试上成绩优异。
尽管 Phi-3 mini 被优化至可部署在手机上,但它的性能可以与 Mixtral 8x7B 和 GPT-3.5 等模型相媲美。微软表示,创新主要在于用于训练的数据集。
与此同时,Phi-3 与 Llama-2 使用相同的架构,方便开源社区在其基础上开发。
此前,微软的 Phi 系列模型曾经引发了人们的热议,去年 6 月,微软发布了《Textbooks Are All You Need》论文,用规模仅为 7B token 的「教科书质量」数据训练 1.3B 参数的模型 phi-1,实现了良好的性能。
去年 9 月,微软进一步探索这条道路,让 1.3B 参数的 Transformer 架构语言模型 Phi-1.5 显示出强大的编码能力。
去年底,微软提出的 Phi-2 具备了一定的常识能力,在 2.7B 的量级上多个基准测试成绩超过 Llama2 7B、Llama2 13B、Mistral 7B 等一众先进模型。
Phi-3 技术报告:https://arxiv.org/abs/2404.14219
刚刚提出的 phi-3-mini 是一个在 3.3 万亿个 token 上训练的 38 亿参数语言模型。实验测试表明,phi-3-mini 的整体性能可与 Mixtral 8x7B 和 GPT-3.5 等模型相媲美,例如 phi -3-mini 在 MMLU 上达到了 69%,在 MT-bench 上达到了 8.38。
微软之前对 phi 系列模型的研究表明,高质量的「小数据」能够让较小的模型具备良好的性能。phi-3-mini 在经过严格过滤的网络数据和合成数据(类似于 phi-2)上进行训练,并进一步调整了稳健性、安全性和聊天格式。
此外,研究团队还提供了针对 4.8T token 训练的 7B 和 14B 模型的初始参数扩展结果,称为 phi-3-small 和 phi-3-medium,两者都比 phi-3-mini 能力更强。
学术基准
在标准开源基准测试中,phi-3-mini 与 phi-2 、Mistral-7b-v0.1、Mixtral-8x7B、Gemma 7B 、Llama-3-instruct8B 和 GPT-3.5 的比较结果如下表所示,为了确保具有可比性,所有结果都是通过完全相同的 pipeline 得到的。
安全性
Phi-3-mini 是根据微软负责任人工智能原则开发的。保证大模型安全的总体方法包括训练后的安全调整、红队(red-teaming)测试、自动化测试和数十个 RAI 危害类别的评估。微软利用受 [BSA+ 24] 启发修改的有用和无害偏好数据集 [BJN+ 22、JLD+ 23] 和多个内部生成的数据集来解决安全性后训练(post-training)的 RAI 危害类别。微软一个独立的 red team 反复检查了 phi-3-mini,以进一步确定后训练过程中需要改进的领域。
根据 red team 的反馈,研究团队整理了额外的数据集从而完善后训练数据集。这一过程导致有害响应率显著降低,如图 3 所示。
下表显示了 phi-3-mini-4k 和 phi-3-mini-128k 与 phi-2、Mistral-7B-v0.1、Gemma 7B 的内部多轮对话 RAI 基准测试结果。该基准测试利用 GPT-4 模拟五个不同类别的多轮对话并评估模型响应。
缺陷
微软表示,就 LLM 能力而言,虽然 phi-3-mini 模型达到了与大型模型相似的语言理解和推理能力水平,但它在某些任务上仍然受到其规模的根本限制。例如,该模型根本没有能力存储太多「事实知识」,这可以从 TriviaQA 上的低评分中看出。不过,研究人员相信这些问题可以通过搜索引擎增强的方式来解决。 whaosoft aiot http://143ai.com
参考内容:https://news.ycombinator.com/item?id=40127806
Llama模型的发布不仅证明了开源模型在全球AI领域的重要性,也为AI的未来发展方向提供了新的视角和动力。通过持续的技术进步和社区驱动的创新,Llama有望继续推动全球AI技术的广泛应用和发展。
在AI领域,大模型的发展正以前所未有的速度推进技术的边界。
北京时间4月19日凌晨,Meta在官网上官宣了Llama-3,作为继Llama-1、Llama-2和Code-Llama之后的第三代模型,Llama-3在多个基准测试中实现了全面领先,性能优于业界同类最先进的模型。
纵观Llama系列模型,从版本1到3,展示了大规模预训练语言模型的演进及其在实际应用中的显著潜力。这些模型不仅在技术上不断刷新纪录,更在商业和学术界产生了深远的影响。因此,对Llama模型不同版本之间的系统对比,不仅可以揭示技术进步的具体细节,也能帮助我们理解这些高级模型如何解决现实世界的复杂问题。
1. Llama进化史
本节将对每个版本的Llama模型进行简要介绍,包括它们发布的时间和主要特点。
1.1 Llama-1 系列
Llama-1 [1]是Meta在2023年2月发布的大语言模型,是当时性能非常出色的开源模型之一,有7B、13B、30B和65B四个参数量版本。Llama-1各个参数量版本都在超过1T token的语料上进行了预训训练,其中,最大的65B参数的模型在2,048张A100 80G GPU上训练了近21天,并在大多数基准测试中超越了具有175B参数的GPT-3。
由于模型开源且性能优异,Llama迅速成为了开源社区中最受欢迎的大模型之一,以Llama为核心的生态圈也由此崛起。我们将在第6节对这一生态进行详细介绍。与此同时,众多研究者将其作为基座模型,进行了继续预训练或者微调,衍生出了众多变体模型(见下图),极大地推动了大模型领域的研究进展。
唯一美中不足的是,因为开源协议问题,Llama-1不可免费商用。
1.2 Llama-2 系列
时隔5个月,Meta在2023年7月发布了免费可商用版本 Llama-2 [2],有7B、13B、34B和70B四个参数量版本,除了34B模型外,其他均已开源。
相比于Llama-1,Llama-2将预训练的语料扩充到了 2T token,同时将模型的上下文长度从2,048翻倍到了4,096,并引入了分组查询注意力机制(grouped-query attention, GQA)等技术。
有了更强大的基座模型Llama-2,Meta通过进一步的有监督微调(Supervised Fine-Tuning, SFT)、基于人类反馈的强化学习(Reinforcement Learning with Human Feedback, RLHF)等技术对模型进行迭代优化,并发布了面向对话应用的微调系列模型 Llama-2 Chat。
通过“预训练-有监督微调-基于人类反馈的强化学习”这一训练流程,Llama-2 Chat不仅在众多基准测试中取得了更好的模型性能,同时在应用中也更加安全。
随后,得益于Llama-2的优异性能,Meta在2023年8月发布了专注于代码生成的Code-Llama,共有7B、13B、34B和70B四个参数量版本。
1.3 Llama-3
系列2024年4月,Meta正式发布了开源大模型 Llama 3,包括8B和70B两个参数量版本。除此之外,Meta还透露,400B的Llama-3还在训练中。
相比Llama-2,Llama-3支持8K长文本,并采用了一个编码效率更高的tokenizer,词表大小为128K。在预训练数据方面,Llama-3使用了超过15T token的语料,这比Llama 2的7倍还多。
Llama-3在性能上取得了巨大飞跃,并在相同规模的大模型中取得了最优异的性能。
另外,推理、代码生成和指令跟随等能力得到了极大的改进,使Llama 3更加可控。
2. 模型架构
本节将详细描述Llama的模型架构,包括神经网络的大小、层数、注意力机制等。
目前,主流的大语言模型都采用了Transformer[3]架构,它是一个基于多层自注意力(Self-attention)的神经网络模型。
原始的Transformer由编码器(Encoder)和解码器(Decoder)两个部分构成,同时,这两个部分也可以独立使用。
例如基于编码器的BERT [4]模型和基于解码器的GPT [5]模型。
Llama模型与GPT类似,也是采用了基于解码器的架构。在原始Transformer解码器的基础上,Llama进行了如下改动:
为了增强训练稳定性,采用前置的RMSNorm [6]作为层归一化方法。
为了提高模型性能,采用SwiGLU [7]作为激活函数。
为了更好地建模长序列数据,采用RoPE [8]作为位置编码。
为了平衡效率和性能,部分模型采用了分组查询注意力机制(Grouped-Query Attention, GQA)[9]。
具体来说,首先将输入的token序列通过词嵌入(word embedding)矩阵转化为词向量序列。然后,词向量序列作为隐藏层状态依次通过
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。