当前位置:   article > 正文

NLP学习(十二)-NLP实战之LSTM进行文本情感分析-tensorflow2+Python3_label_dict.pk

label_dict.pk

情感分析简介

文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类。它是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。
  本文将介绍情感分析中的情感极性(倾向)分析。所谓情感极性分析,指的是对文本进行褒义、贬义、中性的判断。在大多应用场景下,只分为两类。例如对于“喜爱”和“厌恶”这两个词,就属于不同的情感倾向。
  本文将详细介绍如何使用深度学习模型中的LSTM模型来实现文本的情感分析。

文本介绍及语料分析

我们以某电商网站中某个商品的评论作为语料(corpus.csv),该数据集的下载网址为:https://github.com/renjunxiang/Text-Classification/blob/master/TextClassification/data/data_single.csv ,该数据集一共有4310条评论数据,文本的情感分为两类:“正面”和“反面”
接着我们需要对语料做一个简单的分析:
数据集中的情感分布;
数据集中的评论句子长度分布。
  使用以下Python脚本,我们可以统计出数据集中的情感分布以及评论句子长度分布。

# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager
from itertools import accumulate

# 统计句子长度及长度出现的频数
df = pd.read_csv('../testdata/data_single.csv')
print(df.groupby('label')['label'].count())

df['length'] = df['evaluation'].apply(lambda x: len(x))
len_df = df.groupby('length').count()
sent_length = len_df.index.tolist()
sent_freq = len_df['evaluation'].tolist()

# 绘制句子长度及出现频数统计图
plt.bar(sent_length, sent_freq)
plt.title("句子长度及出现频数统计图")
plt.xlabel("句子长度")
plt.ylabel("句子长度出现的频数")
plt.savefig("./句子长度及出现频数统计图.png")
plt.show()
plt.close()

# 绘制句子长度累积分布函数(CDF)
sent_pentage_list = [(count/sum(sent_freq)) for count in accumulate(sent_freq)]

# 绘制CDF
plt.plot(sent_length, sent_pentage_list)

# 寻找分位点为quantile的句子长度
quantile = 0.91
#print(list(sent_pentage_list))
for length, per in zip(sent_length, sent_pentage_list):
    if round(per, 2) == quantile:
        index = length
        break
print("\n分位点为%s的句子长度:%d." % (quantile, index))

# 绘制句子长度累积分布函数图
plt.plot(sent_length, sent_pentage_list)
plt.hlines(quantile, 0, index, colors="c", linestyles="dashed")
plt.vlines(index, 0, quantile, colors="c", linestyles="dashed")
plt.text(0, quantile, str(quantile))
plt.text(index, 0, str(index))
plt.title("句子长度累积分布函数图")
plt.xlabel("句子长度")
plt.ylabel("句子长度累积频率")
plt.savefig("./句子长度累积分布函数图.png")
plt.show()
plt.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

输出的结果如下:

label
正面    1908
负面    2375
Name: label, dtype: int64
分位点为0.91的句子长度:183.
  • 1
  • 2
  • 3
  • 4
  • 5

可以看到,正反面两类情感的比例差不多。句子长度及出现频数统计图如下:
在这里插入图片描述
句子长度累积分布函数图如下:
在这里插入图片描述
可以看到,大多数样本的句子长度集中在1-200之间,句子长度累计频率取0.91分位点,则长度为183左右。

使用LSTM模型

接着我们使用深度学习中的LSTM模型来对上述数据集做情感分析,笔者实现的模型框架如下:
在这里插入图片描述
完整的Python代码如下:

# -*- coding: utf-8 -*-
import pickle
import numpy as np
import pandas as pd
from tensorflow.keras.utils import plot_model
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import LSTM, Dense, Embedding, Dropout
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 导入数据
# 文件的数据中,特征为evaluation, 类别为label.
def load_data(filepath, input_shape=20):
    df = pd.read_csv(filepath)

    # 标签及词汇表
    labels, vocabulary = list(df['label'].unique()), list(df['evaluation'].unique())

    # 构造字符级别的特征
    string = ''
    for word in vocabulary:
        string += word

    vocabulary = set(string)

    # 字典列表
    word_dictionary = {word: i+1 for i, word in enumerate(vocabulary)}
    with open('word_dict.pk', 'wb') as f:
        pickle.dump(word_dictionary, f)
    inverse_word_dictionary = {i+1: word for i, word in enumerate(vocabulary)}
    label_dictionary = {label: i for i, label in enumerate(labels)}
    with open('label_dict.pk', 'wb') as f:
        pickle.dump(label_dictionary, f)
    output_dictionary = {i: labels for i, labels in enumerate(labels)}

    vocab_size = len(word_dictionary.keys()) # 词汇表大小
    label_size = len(label_dictionary.keys()) # 标签类别数量

    # 序列填充,按input_shape填充,长度不足的按0补充
    x = [[word_dictionary[word] for word in sent] for sent in df['evaluation']]
    x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=0)
    y = [[label_dictionary[sent]] for sent in df['label']]
    y = [to_categorical(label, num_classes=label_size) for label in y]
    y = np.array([list(_[0]) for _ in y])

    return x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary

# 创建深度学习模型, Embedding + LSTM + Softmax.
def create_LSTM(n_units, input_shape, output_dim, filepath):
    x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary = load_data(filepath)
    model = Sequential()
    model.add(Embedding(input_dim=vocab_size + 1, output_dim=output_dim,
                        input_length=input_shape, mask_zero=True))
    model.add(LSTM(n_units, input_shape=(x.shape[0], x.shape[1])))
    model.add(Dropout(0.2))
    model.add(Dense(label_size, activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    plot_model(model, to_file='./model_lstm.png', show_shapes=True)
    model.summary()

    return model

# 模型训练
def model_train(input_shape, filepath, model_save_path):

    # 将数据集分为训练集和测试集,占比为9:1
    # input_shape = 100
    x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary = load_data(filepath, input_shape)
    train_x, test_x, train_y, test_y = train_test_split(x, y, test_size = 0.1, random_state = 42)

    # 模型输入参数,需要自己根据需要调整
    n_units = 100
    batch_size = 32
    epochs = 5
    output_dim = 20

    # 模型训练
    lstm_model = create_LSTM(n_units, input_shape, output_dim, filepath)
    lstm_model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=1)

    # 模型保存
    lstm_model.save(model_save_path)

    N = test_x.shape[0]  # 测试的条数
    predict = []
    label = []
    for start, end in zip(range(0, N, 1), range(1, N+1, 1)):
        sentence = [inverse_word_dictionary[i] for i in test_x[start] if i != 0]
        y_predict = lstm_model.predict(test_x[start:end])
        label_predict = output_dictionary[np.argmax(y_predict[0])]
        label_true = output_dictionary[np.argmax(test_y[start:end])]
        #print(''.join(sentence), label_true, label_predict) # 输出预测结果
        predict.append(label_predict)
        label.append(label_true)

    acc = accuracy_score(predict, label) # 预测准确率
    print('模型在测试集上的准确率为: %s.' % acc)

if __name__ == '__main__':
    filepath = '../testdata/data_single.csv'
    input_shape = 180
    model_save_path = './corpus_model.h5'
    model_train(input_shape, filepath, model_save_path)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106

对上述模型,共训练5次,训练集和测试集比例为9:1,输出的结果为:


```css
Epoch 1/5
121/121 [==============================] - 9s 72ms/step - loss: 0.4714 - accuracy: 0.7779
Epoch 2/5
121/121 [==============================] - 9s 71ms/step - loss: 0.2148 - accuracy: 0.9328
Epoch 3/5
121/121 [==============================] - 9s 71ms/step - loss: 0.1639 - accuracy: 0.9478
Epoch 4/5
121/121 [==============================] - 10s 84ms/step - loss: 0.1432 - accuracy: 0.9546
Epoch 5/5
121/121 [==============================] - 9s 75ms/step - loss: 0.1294 - accuracy: 0.9613
模型在测试集上的准确率为: 0.9020979020979021.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

可以看到,该模型在训练集上的准确率为95%以上,在测试集上的准确率为90%以上,效果还是相当不错的。

模型预测

接着,我们利用刚刚训练好的模型,对新的数据进行测试。笔者随机改造上述样本的评论,然后预测其情感倾向。情感预测的Python代码如下:

# -*- coding: utf-8 -*-

# Import the necessary modules
import pickle
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences


# 导入字典
with open('word_dict.pk', 'rb') as f:
    word_dictionary = pickle.load(f)
with open('label_dict.pk', 'rb') as f:
    output_dictionary = pickle.load(f)

try:
    # 数据预处理
    input_shape = 180
    sent = "电视刚安装好,说实话,画质不怎么样,很差!"
    x = [[word_dictionary[word] for word in sent]]
    x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=0)

    # 载入模型
    model_save_path = './corpus_model.h5'
    lstm_model = load_model(model_save_path)

    # 模型预测
    y_predict = lstm_model.predict(x)
    label_dict = {v:k for k,v in output_dictionary.items()}
    print('输入语句: %s' % sent)
    print('情感预测结果: %s' % label_dict[np.argmax(y_predict)])

except KeyError as err:
    print("您输入的句子有汉字不在词汇表中,请重新输入!")
    print("不在词汇表中的单词为:%s." % err)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

输出结果如下:

输入语句: 电视刚安装好,说实话,画质不怎么样,很差!
情感预测结果: 负面
  • 1
  • 2

让我们再尝试着测试一些其他的评论:

输入语句: 物超所值,真心不错
情感预测结果: 正面
输入语句: 很大很好,方便安装!
情感预测结果: 正面
输入语句: 卡,慢,死机,闪退。
情感预测结果: 负面
输入语句: 这种货色就这样吧,别期待怎样。
情感预测结果: 负面
输入语句: 啥服务态度码,出了事情一个推一个,送货安装还收我50
情感预测结果: 负面
输入语句: 京东服务很好!但我买的这款电视两天后就出现这样的问题,很后悔买了这样的电视
情感预测结果: 负面
输入语句: 产品质量不错,就是这位客服的态度十分恶劣,对相关服务不予解释说明,缺乏耐心,
情感预测结果: 负面
输入语句: 很满意,电视非常好。护眼模式,很好,也很清晰。
情感预测结果: 负面
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

总结

当然,该模型并不是对一切该商品的评论都会有好的效果,还是应该针对特定的语料去训练,去预测。
  本文主要介绍了LSTM模型在文本情感分析方面的应用,该项目已上传Github,地址为: https://github.com/percent4/Sentiment_Analysis 。

参考文献

数据集来源:https://github.com/renjunxiang/Text-Classification/blob/master/TextClassification/data/data_single.csv

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/72859
推荐阅读
相关标签
  

闽ICP备14008679号