当前位置:   article > 正文

[Algorithm][动态规划][子序列问题][最长递增子序列][摆动序列]详细讲解

[Algorithm][动态规划][子序列问题][最长递增子序列][摆动序列]详细讲解


0.子序列 vs 子数组

  • 子序列
    • 相对顺序是跟源字符串/数组是一致的
    • 但是元素和元素之间,在源字符串/数组中可以是不连续的
    • 一般时间复杂度: O ( 2 n ) O(2^n) O(2n)
  • 子数组
    • 在源字符串/数组中挑出来,必须是连续的
      • 子串与子数组是一个意思
    • 一般时间复杂度: O ( N 2 ) O(N^2) O(N2)
  • 子序列其实相当于包含了子数组
  • 子序列问题经典解法:两层循环

1.最长递增子序列

1.题目链接


2.算法原理详解

  • 注意:本题思考方式非常有标志性
  • 思路
    • 确定状态表示 -> dp[i]的含义

      • i位置元素为结尾的所有子序列中,最长递增子序列的长度
    • 推导状态转移方程
      请添加图片描述

    • 初始化vector<int> dp(n, 1)

    • 确定填表顺序:从左往右

    • 确定返回值:整个dp表里的最大值


3.代码实现

int lengthOfLIS(vector<int>& nums) 
{
    int n = nums.size();
    vector<int> dp(n, 1);

    int ret = 1;
    for(int i = 1; i < n; i++)
    {
        for(int j = 0; j < i; j++)
        {
            if(nums[j] < nums[i])
            {
                dp[i] = max(dp[i], dp[j] + 1);
            }
        }

        ret = max(ret, dp[i]);
    }

    return ret;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

2.摆动序列

1.题目链接


2.题目链接

  • 思路
    • 确定状态表示 -> dp[i]的含义

      • i位置元素为结尾的所有子序列中,最长的摆动序列的长度
      • 本题状态标识还可以继续划分
        • f[i]:以i位置元素为结尾的所有子序列中,最后一个位置呈现“上升”趋势的最长的摆动序列的长度
        • g[i]:以i位置元素为结尾的所有子序列中,最后一个位置呈现“下降”趋势的最长的摆动序列的长度
    • 推导状态转移方程

      • ji前面的任一一个数
        请添加图片描述
    • 初始化:vector<int> f(n, 1), g(n, 1)

    • 确定填表顺序:从左往右,两个表一起填

    • 确定返回值:两个dp表里的最大值


3.代码实现

int wiggleMaxLength(vector<int>& nums) 
{
    int n = nums.size();
    vector<int> f(n, 1), g(n, 1);

    int ret = 1;
    for(int i = 1; i < n; i++)
    {
        for(int j = 0; j < i; j++)
        {
            if(nums[j] < nums[i])
            {
                f[i] = max(f[i], g[j] + 1);
            }
            else if(nums[j] > nums[i])
            {
                g[i] = max(g[i], f[j] + 1);
            }
        }

        ret = max(ret, max(f[i], g[i]));
    }

    return ret;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/755319
推荐阅读
相关标签
  

闽ICP备14008679号