当前位置:   article > 正文

【目标检测】yolov5仅识别人_基于yolo5只检测人

基于yolo5只检测人

1. 准备

https://blog.csdn.net/qq_44747572/article/details/127604416?spm=1001.2014.3001.5501

2. 相关文件

在这里插入图片描述

3. 推理

# coding:gbk
# coding:utf-8
import cv2.cv2 as cv2
import numpy as np
import onnxruntime
import torch
import torchvision
import time
import random
from utils.general import non_max_suppression
import os


class YOLOV5_ONNX(object):
	def __init__(self,onnx_path):
		'''初始化onnx'''
		self.onnx_session=onnxruntime.InferenceSession(onnx_path)
		print(onnxruntime.get_device())
		self.input_name=self.get_input_name()
		self.output_name=self.get_output_name()
		self.classes=['person', 'car', 'special_person', 'truck']
	def get_input_name(self):
		'''获取输入节点名称'''
		input_name=[]
		for node in self.onnx_session.get_inputs():
			input_name.append(node.name)

		return input_name


	def get_output_name(self):
		'''获取输出节点名称'''
		output_name=[]
		for node in self.onnx_session.get_outputs():
			output_name.append(node.name)

		return output_name

	def get_input_feed(self,image_tensor):
		'''获取输入tensor'''
		input_feed={}
		for name in self.input_name:
			input_feed[name]=image_tensor

		return input_feed

	def letterbox(self,img, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=False, scaleup=True,
				  stride=32):
		'''图片归一化'''
		# Resize and pad image while meeting stride-multiple constraints
		shape = img.shape[:2]  # current shape [height, width]
		if isinstance(new_shape, int):
			new_shape = (new_shape, new_shape)

		# Scale ratio (new / old)
		r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
		if not scaleup:  # only scale down, do not scale up (for better test mAP)
			r = min(r, 1.0)

		# Compute padding
		ratio = r, r  # width, height ratios

		new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
		dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

		if auto:  # minimum rectangle
			dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
		elif scaleFill:  # stretch
			dw, dh = 0.0, 0.0
			new_unpad = (new_shape[1], new_shape[0])
			ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

		dw /= 2  # divide padding into 2 sides
		dh /= 2

		if shape[::-1] != new_unpad:  # resize
			img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)

		top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
		left, right = int(round(dw - 0.1)), int(round(dw + 0.1))

		img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
		return img, ratio, (dw, dh)

	def xywh2xyxy(self,x):
		# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
		y = np.copy(x)

		y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
		y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
		y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
		y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y

		return y

	def nms(self,prediction, conf_thres=0.1, iou_thres=0.6, agnostic=False):
		if prediction.dtype is torch.float16:
			prediction = prediction.float()  # to FP32
		xc = prediction[..., 4] > conf_thres  # candidates
		min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
		max_det = 300  # maximum number of detections per image
		output = [None] * prediction.shape[0]
		for xi, x in enumerate(prediction):  # image index, image inference
			x = x[xc[xi]]  # confidence
			if not x.shape[0]:
				continue

			x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
			box = self.xywh2xyxy(x[:, :4])

			conf, j = x[:, 5:].max(1, keepdim=True)
			x = torch.cat((torch.tensor(box), conf, j.float()), 1)[conf.view(-1) > conf_thres]
			n = x.shape[0]  # number of boxes
			if not n:
				continue
			c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
			boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
			i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
			if i.shape[0] > max_det:  # limit detections
				i = i[:max_det]
			output[xi] = x[i]

		return output

	def clip_coords(self,boxes, img_shape):
		'''查看是否越界'''
		# Clip bounding xyxy bounding boxes to image shape (height, width)
		boxes[:, 0].clamp_(0, img_shape[1])  # x1
		boxes[:, 1].clamp_(0, img_shape[0])  # y1
		boxes[:, 2].clamp_(0, img_shape[1])  # x2
		boxes[:, 3].clamp_(0, img_shape[0])  # y2

	def scale_coords(self,img1_shape, coords, img0_shape, ratio_pad=None):
		'''
		坐标对应到原始图像上,反操作:减去pad,除以最小缩放比例
		:param img1_shape: 输入尺寸
		:param coords: 输入坐标
		:param img0_shape: 映射的尺寸
		:param ratio_pad:
		:return:
		'''

		# Rescale coords (xyxy) from img1_shape to img0_shape
		if ratio_pad is None:  # calculate from img0_shape
			gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new,计算缩放比率
			pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (
						img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding ,计算扩充的尺寸
		else:
			gain = ratio_pad[0][0]
			pad = ratio_pad[1]

		coords[:, [0, 2]] -= pad[0]  # x padding,减去x方向上的扩充
		coords[:, [1, 3]] -= pad[1]  # y padding,减去y方向上的扩充
		coords[:, :4] /= gain  # 将box坐标对应到原始图像上
		self.clip_coords(coords, img0_shape)  # 边界检查
		return coords

	def sigmoid(self,x):
		return 1 / (1 + np.exp(-x))



	def infer(self,img_path):
		'''执行前向操作预测输出'''
		# 超参数设置
		img_size=(640,640) #图片缩放大小
		# 读取图片
		src_img=cv2.imread(img_path)
		start=time.time()
		src_size=src_img.shape[:2]

		# 图片填充并归一化
		img=self.letterbox(src_img,img_size,stride=32)[0]

		# Convert
		img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
		img = np.ascontiguousarray(img)


		# 归一化
		img=img.astype(dtype=np.float32)
		img/=255.0

		# # BGR to RGB
		# img = img[:, :, ::-1].transpose(2, 0, 1)
		# img = np.ascontiguousarray(img)

		# 维度扩张
		img=np.expand_dims(img,axis=0)
		# print('img resuming: ',time.time()-start)
		# 前向推理
		# start=time.time()
		input_feed=self.get_input_feed(img)
		# ort_inputs = {self.onnx_session.get_inputs()[0].name: input_feed[None].numpy()}
		pred = torch.tensor(self.onnx_session.run(None, input_feed)[0])
		results = non_max_suppression(pred, 0.5,0.5)
		# print('onnx resuming: ',time.time()-start)
		# pred=self.onnx_session.run(output_names=self.output_name,input_feed=input_feed)

		#映射到原始图像
		img_shape=img.shape[2:]
		# print(img_size)
		for det in results:  # detections per image
			if det is not None and len(det):
				det[:, :4] = self.scale_coords(img_shape, det[:, :4],src_size).round()
		# print(time.time()-start)
		if det is not None and len(det):
			self.draw(src_img, det)


	def plot_one_box(self,x, img, color=None, label=None, line_thickness=None):
		# Plots one bounding box on image img
		tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
		color = color or [random.randint(0, 255) for _ in range(3)]
		c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
		cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
		if label:
			tf = max(tl - 1, 1)  # font thickness
			t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
			c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
			cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
			cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)

	def draw(self,img, boxinfo):
		colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(self.classes))]
		for *xyxy, conf, cls in boxinfo:
			label = '%s %.2f' % ('person', conf)
			if int(cls) == 0:    # 仅仅判断person
				self.plot_one_box(xyxy, img, label=label, color=[0,0,255], line_thickness=1)
		cv2.namedWindow("dst",0)
		cv2.imshow("dst", img)
		cv2.imwrite("res1.jpg",img)
		cv2.waitKey(0)
		return 0


if __name__=="__main__":
	model=YOLOV5_ONNX(onnx_path="./yolov5s.onnx")
	model.infer(img_path="./zidane.jpg")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239

请添加图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/77828
推荐阅读
相关标签
  

闽ICP备14008679号