赞
踩
PSO算法算是寻优算法中比较简单的一种,其大概思想是:
现在我们计算:
的极大值,每一个变量的取值范围都是(1,25)。
Python代码为:
# -*- coding: utf-8 -*-
"""
@Time : 2020/9/13 10:08
@Author :KI
@File :pso.py
@Motto:Hungry And Humble
"""
import math
import random
import numpy as np
import matplotlib.pyplot as plt
import pylab as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
class PSO:
def __init__(self, dimension, time, size, low, up, v_low, v_high):
# 初始化
self.dimension = dimension # 变量个数
self.time = time # 迭代的代数
self.size = size # 种群大小
self.bound = [] # 变量的约束范围
self.bound.append(low)
self.bound.append(up)
self.v_low = v_low
self.v_high = v_high
self.x = np.zeros((self.size, self.dimension)) # 所有粒子的位置
self.v = np.zeros((self.size, self.dimension)) # 所有粒子的速度
self.p_best = np.zeros((self.size, self.dimension)) # 每个粒子最优的位置
self.g_best = np.zeros((1, self.dimension))[0] # 全局最优的位置
# 初始化第0代初始全局最优解
temp = -1000000
for i in range(self.size):
for j in range(self.dimension):
self.x[i][j] = random.uniform(self.bound[0][j], self.bound[1][j])
self.v[i][j] = random.uniform(self.v_low, self.v_high)
self.p_best[i] = self.x[i] # 储存最优的个体
fit = self.fitness(self.p_best[i])
# 做出修改
if fit > temp:
self.g_best = self.p_best[i]
temp = fit
def fitness(self, x):
"""
个体适应值计算
"""
x1 = x[0]
x2 = x[1]
x3 = x[2]
x4 = x[3]
x5 = x[4]
y = math.floor((x2 * np.exp(x1) + x3 * np.sin(x2) + x4 + x5) * 100) / 100
# print(y)
return y
def update(self, size):
c1 = 2.0 # 学习因子
c2 = 2.0
w = 0.8 # 自身权重因子
for i in range(size):
# 更新速度(核心公式)
self.v[i] = w * self.v[i] + c1 * random.uniform(0, 1) * (
self.p_best[i] - self.x[i]) + c2 * random.uniform(0, 1) * (self.g_best - self.x[i])
# 速度限制
for j in range(self.dimension):
if self.v[i][j] < self.v_low:
self.v[i][j] = self.v_low
if self.v[i][j] > self.v_high:
self.v[i][j] = self.v_high
# 更新位置
self.x[i] = self.x[i] + self.v[i]
# 位置限制
for j in range(self.dimension):
if self.x[i][j] < self.bound[0][j]:
self.x[i][j] = self.bound[0][j]
if self.x[i][j] > self.bound[1][j]:
self.x[i][j] = self.bound[1][j]
# 更新p_best和g_best
if self.fitness(self.x[i]) > self.fitness(self.p_best[i]):
self.p_best[i] = self.x[i]
if self.fitness(self.x[i]) > self.fitness(self.g_best):
self.g_best = self.x[i]
def pso(self):
best = []
self.final_best = np.array([1, 2, 3, 4, 5])
for gen in range(self.time):
self.update(self.size)
if self.fitness(self.g_best) > self.fitness(self.final_best):
self.final_best = self.g_best.copy()
print('当前最佳位置:{}'.format(self.final_best))
temp = self.fitness(self.final_best)
print('当前的最佳适应度:{}'.format(temp))
best.append(temp)
t = [i for i in range(self.time)]
plt.figure()
plt.plot(t, best, color='red', marker='.', ms=15)
plt.rcParams['axes.unicode_minus'] = False
plt.margins(0)
plt.xlabel(u"迭代次数") # X轴标签
plt.ylabel(u"适应度") # Y轴标签
plt.title(u"迭代过程") # 标题
plt.show()
if __name__ == '__main__':
time = 50
size = 100
dimension = 5
v_low = -1
v_high = 1
low = [1, 1, 1, 1, 1]
up = [25, 25, 25, 25, 25]
pso = PSO(dimension, time, size, low, up, v_low, v_high)
pso.pso()
运行结果:
收敛过程:
可以看出,不到10次就收敛了。
matlab代码:
z=@(x)-(x(2)*exp(x(1))+x(3)*sin(x(2))+x(4)*x(5));
x0=[1;1;1;1;1];
[x,feval]=fmincon(z,x0,[],[],[],[],[1;1;1;1;1],[25;25;25;25;25])
运行结果:
x =
25.0000
25.0000
13.1400
1.0002
1.0002
feval =
-1.8001e+12
如果想要利用上述代码求极小值,可以有以下两种办法:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。