当前位置:   article > 正文

粒子群算法(PSO)的Python实现(求解多元函数的极值)_python蚁群算法多无函数求极值

python蚁群算法多无函数求极值

PSO算法算是寻优算法中比较简单的一种,其大概思想是:
在这里插入图片描述
现在我们计算:
在这里插入图片描述
的极大值,每一个变量的取值范围都是(1,25)。
Python代码为:

# -*- coding: utf-8 -*-
"""
@Time : 2020/9/13 10:08
@Author :KI 
@File :pso.py
@Motto:Hungry And Humble

"""
import math
import random
import numpy as np
import matplotlib.pyplot as plt
import pylab as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']


class PSO:
    def __init__(self, dimension, time, size, low, up, v_low, v_high):
        # 初始化
        self.dimension = dimension  # 变量个数
        self.time = time  # 迭代的代数
        self.size = size  # 种群大小
        self.bound = []  # 变量的约束范围
        self.bound.append(low)
        self.bound.append(up)
        self.v_low = v_low
        self.v_high = v_high
        self.x = np.zeros((self.size, self.dimension))  # 所有粒子的位置
        self.v = np.zeros((self.size, self.dimension))  # 所有粒子的速度
        self.p_best = np.zeros((self.size, self.dimension))  # 每个粒子最优的位置
        self.g_best = np.zeros((1, self.dimension))[0]  # 全局最优的位置

        # 初始化第0代初始全局最优解
        temp = -1000000
        for i in range(self.size):
            for j in range(self.dimension):
                self.x[i][j] = random.uniform(self.bound[0][j], self.bound[1][j])
                self.v[i][j] = random.uniform(self.v_low, self.v_high)
            self.p_best[i] = self.x[i]  # 储存最优的个体
            fit = self.fitness(self.p_best[i])
            # 做出修改
            if fit > temp:
                self.g_best = self.p_best[i]
                temp = fit

    def fitness(self, x):
        """
        个体适应值计算
        """
        x1 = x[0]
        x2 = x[1]
        x3 = x[2]
        x4 = x[3]
        x5 = x[4]
        y = math.floor((x2 * np.exp(x1) + x3 * np.sin(x2) + x4 + x5) * 100) / 100
        # print(y)
        return y

    def update(self, size):
        c1 = 2.0  # 学习因子
        c2 = 2.0
        w = 0.8  # 自身权重因子
        for i in range(size):
            # 更新速度(核心公式)
            self.v[i] = w * self.v[i] + c1 * random.uniform(0, 1) * (
                    self.p_best[i] - self.x[i]) + c2 * random.uniform(0, 1) * (self.g_best - self.x[i])
            # 速度限制
            for j in range(self.dimension):
                if self.v[i][j] < self.v_low:
                    self.v[i][j] = self.v_low
                if self.v[i][j] > self.v_high:
                    self.v[i][j] = self.v_high

            # 更新位置
            self.x[i] = self.x[i] + self.v[i]
            # 位置限制
            for j in range(self.dimension):
                if self.x[i][j] < self.bound[0][j]:
                    self.x[i][j] = self.bound[0][j]
                if self.x[i][j] > self.bound[1][j]:
                    self.x[i][j] = self.bound[1][j]
            # 更新p_best和g_best
            if self.fitness(self.x[i]) > self.fitness(self.p_best[i]):
                self.p_best[i] = self.x[i]
            if self.fitness(self.x[i]) > self.fitness(self.g_best):
                self.g_best = self.x[i]

    def pso(self):
        best = []
        self.final_best = np.array([1, 2, 3, 4, 5])
        for gen in range(self.time):
            self.update(self.size)
            if self.fitness(self.g_best) > self.fitness(self.final_best):
                self.final_best = self.g_best.copy()
            print('当前最佳位置:{}'.format(self.final_best))
            temp = self.fitness(self.final_best)
            print('当前的最佳适应度:{}'.format(temp))
            best.append(temp)
        t = [i for i in range(self.time)]
        plt.figure()
        plt.plot(t, best, color='red', marker='.', ms=15)
        plt.rcParams['axes.unicode_minus'] = False
        plt.margins(0)
        plt.xlabel(u"迭代次数")  # X轴标签
        plt.ylabel(u"适应度")  # Y轴标签
        plt.title(u"迭代过程")  # 标题
        plt.show()


if __name__ == '__main__':
    time = 50
    size = 100
    dimension = 5
    v_low = -1
    v_high = 1
    low = [1, 1, 1, 1, 1]
    up = [25, 25, 25, 25, 25]
    pso = PSO(dimension, time, size, low, up, v_low, v_high)
    pso.pso()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120

运行结果:
在这里插入图片描述
收敛过程:
在这里插入图片描述
可以看出,不到10次就收敛了。

matlab代码:

z=@(x)-(x(2)*exp(x(1))+x(3)*sin(x(2))+x(4)*x(5));
x0=[1;1;1;1;1];
[x,feval]=fmincon(z,x0,[],[],[],[],[1;1;1;1;1],[25;25;25;25;25])
  • 1
  • 2
  • 3

运行结果:

x =

   25.0000
   25.0000
   13.1400
    1.0002
    1.0002


feval =
  -1.8001e+12
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

如果想要利用上述代码求极小值,可以有以下两种办法:

  1. 将fitness函数中的返回值改为-y,此时如果求出的值为z,那么函数的极小值就为-z。
  2. 将第34行代码处的temp改为一个很大的值;将第42、83、85以及93行代码处的">“改为”<"。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/783573
推荐阅读
相关标签
  

闽ICP备14008679号