当前位置:   article > 正文

【LLM】chatglm-6B模型训练和推理_chatglm 推理

chatglm 推理

本篇文章记录下 chatglm-6B 训练和推理过程
环境:Ubuntu 20.04 + 1.13.0+cu116
chatglm-6B 源代码仓库:链接
chatglm-6B 模型权重:链接

源代码及模型 clone 到本地

这里使用的是 THUDM 在 hugging face 开源的模型。
因为模型比较大,仓库保存模式使用的是 git lfs 模式,再 clone 之后再使用 git lfs pull 去 download 大文件。

clone chatglm6B 代码

git clone https://github.com/THUDM/ChatGLM-6B
  • 1

git lfs 在 ubuntu 的安装方式。参考

curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
  • 1
  • 2

clone 模型权重到本地,并且使用 git lfs pull 最新版本的模型权重。参考

git lfs install
git clone https://huggingface.co/THUDM/chatglm-6b
git lfs pull
  • 1
  • 2
  • 3

chatglm-6B ptuning 训练

THUDM提供的 ptuning 方式 链接 链接

这里需要配置的执行脚本如下:

# train.sh
PRE_SEQ_LEN=128
LR=2e-2

CUDA_VISIBLE_DEVICES=0 python3 main.py \
    --do_train \ 
    --train_file /data/AdvertiseGen/train.json \
    --validation_file /data/AdvertiseGen/dev.json \
    --prompt_column content \
    --response_column summary \
    --overwrite_cache \
    --model_name_or_path /data/chatglm-6b \
    --output_dir /data/chatglm-6b-output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \
    --overwrite_output_dir \
    --max_source_length 64 \
    --max_target_length 64 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 16 \
    --predict_with_generate \
    --max_steps 100 \
    --logging_steps 10 \
    --save_steps 50 \
    --learning_rate $LR \
    --pre_seq_len $PRE_SEQ_LEN \
    --quantization_bit 4
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

在显卡内存较低情况下可以使用 quantization_bit=4、per_device_train_batch_size=1、gradient_accumulation_steps=16 ,这种配置下 INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。
训练输出的 metrics 如下:
在这里插入图片描述

chatglm-6B 推理

推理阶段使用的是训练导出的 checkpoint 文件。对应好训练阶段 的 PRE_SEQ_LEN LR 以及训练 STEP ,配置方式如下

# evaluate.sh
PRE_SEQ_LEN=128
CHECKPOINT=adgen-chatglm-6b-pt-128-2e-2
STEP=100

CUDA_VISIBLE_DEVICES=0 python3 main.py \
    --do_predict \
    --validation_file /data/AdvertiseGen/dev.json \
    --test_file /data/AdvertiseGen/dev.json \
    --overwrite_cache \
    --prompt_column content \
    --response_column summary \
    --model_name_or_path /data/chatglm-6b \
    --ptuning_checkpoint /data/chatglm-6b-output/$CHECKPOINT/checkpoint-$STEP \
    --output_dir /data/chatglm-6b-output/$CHECKPOINT \
    --overwrite_output_dir \
    --max_source_length 64 \
    --max_target_length 64 \
    --per_device_eval_batch_size 1 \
    --predict_with_generate \
    --pre_seq_len $PRE_SEQ_LEN \
    --quantization_bit 4
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

运行结果
在这里插入图片描述

web_demo 执行

相关参考

1、https://zhuanlan.zhihu.com/p/627358709

遇到的问题

1、RuntimeError: Internal: src/sentencepiece_processor.cc(1101) [model_proto->ParseFromArray(serialized.data(), serialized.size())]
这是模型权重文件下载不完全或者版本不一致导致的。
解决方法是 git lfs pull 最新的权重文件。参考
2、NameError: name ‘round_up’ is not defined
这是没有安装 cpm_kernels 的缘故。使用 pip 安装即可。 参考

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/814018
推荐阅读
相关标签
  

闽ICP备14008679号