赞
踩
使用scrapy爬取当当网的数据,输入搜寻的关键字(如python、C++、java等),输入查询的页数,获取到书的名称、作者、价钱、评论数等信息,并下载书籍相应图片,画水平条形图直观显示热度较高的书籍
1. scrapy的使用
2. scrapy.FormRequest() 提交表单
3. 数据保存到mongodb,数据写入.xlsx表格
4. 设置referer防止反爬
5. 使用ImagesPipeLine下载图片
6. 获取评论数前10的书籍,画水平条形图
entrypoint.py
- from scrapy.cmdline import execute
-
- execute(["scrapy","crawl","dangdang"])
items.py
- import scrapy
-
-
- class DangdangSpiderItem(scrapy.Item):
- # define the fields for your item here like:
- # name = scrapy.Field()
- # 书名
- book_name=scrapy.Field()
- # 作者
- author=scrapy.Field()
- # 出版社
- publisher=scrapy.Field()
- # 价格
- price=scrapy.Field()
- # 评论数
- comments_num=scrapy.Field()
- # 图片url
- image_url=scrapy.Field()
- # 搜索内容key
- book_key=scrapy.Field()
dangdang.py
- # -*- coding: utf-8 -*-
- import scrapy
- from lxml import etree
- from DangDang_Spider.items import DangdangSpiderItem
- class DangdangSpider(scrapy.Spider):
- name = 'dangdang'
- allowed_domains = ['dangdang.com']
- start_urls = 'http://search.dangdang.com/'
-
- total_comments_num_list=[]
- total_book_name_list=[]
- # 发起网页请求,换页仅改变了page_index的值
- def start_requests(self):
- self.key=input("请输入查询的书籍:")
- pages=input("请输入希望查询的总页数:")
- while(pages.isdigit()==False or '.' in pages):
- pages = input("输入错误,请输入整数:")
- if int(pages)<=0 or int(pages)>100:
- pages = input("输入超出范围(1-100),请重新输入:")
- form_data={
- 'key':self.key,
- 'act':'input',
- 'page_index':'1'
- }
- for i in range(int(pages)):
- form_data['page_index']=str(i+1)
- # 使用scrapy.FormRequest,可设置表单数据,默认method为POST,可根据具体请求修改
- yield scrapy.FormRequest(self.start_urls,formdata=form_data,method='GET',callback=self.parse)
-
- # xpath提取数据
- def parse(self, response):
- xml=etree.HTML(response.text)
- book_name_list=xml.xpath('//div[@id="search_nature_rg"]/ul//li/a/@title')
- author_list=xml.xpath('//div[@id="search_nature_rg"]/ul//li/p[@class="search_book_author"]/span[1]/a/@title')
- publisher_list=xml.xpath('//div[@id="search_nature_rg"]/ul//li/p[@class="search_book_author"]/span[3]/a/@title')
- price_list=xml.xpath('//div[@id="search_nature_rg"]/ul//li/p[@class="price"]/span[1]/text()')
- comments_num_list=xml.xpath('//div[@id="search_nature_rg"]/ul//li/p[@class="search_star_line"]/a/text()')
- image_url_list=xml.xpath('//div[@id="search_nature_rg"]/ul//li/a/img/@data-original')
- item = DangdangSpiderItem()
- item["book_name"] = book_name_list
- item['author'] = author_list
- item['publisher'] = publisher_list
- item['price'] = price_list
- item['comments_num'] = comments_num_list
- item['image_url']=image_url_list
- item['book_key']=self.key
-
- return item
-
-
-
settings.py
- # -*- coding: utf-8 -*-
-
- # Scrapy settings for DangDang_Spider project
- #
- # For simplicity, this file contains only settings considered important or
- # commonly used. You can find more settings consulting the documentation:
- #
- # https://doc.scrapy.org/en/latest/topics/settings.html
- # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
- # https://doc.scrapy.org/en/latest/topics/spider-middleware.html
-
- BOT_NAME = 'DangDang_Spider'
-
- SPIDER_MODULES = ['DangDang_Spider.spiders']
- NEWSPIDER_MODULE = 'DangDang_Spider.spiders'
-
-
- # Crawl responsibly by identifying yourself (and your website) on the user-agent
- #USER_AGENT = 'DangDang_Spider (+http://www.yourdomain.com)'
-
- # Obey robots.txt rules
- ROBOTSTXT_OBEY = True
-
- # Configure maximum concurrent requests performed by Scrapy (default: 16)
- #CONCURRENT_REQUESTS = 32
-
- # Configure a delay for requests for the same website (default: 0)
- # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay
- # See also autothrottle settings and docs
- #DOWNLOAD_DELAY = 3
- # The download delay setting will honor only one of:
- #CONCURRENT_REQUESTS_PER_DOMAIN = 16
- #CONCURRENT_REQUESTS_PER_IP = 16
-
- # Disable cookies (enabled by default)
- #COOKIES_ENABLED = False
-
- # Disable Telnet Console (enabled by default)
- #TELNETCONSOLE_ENABLED = False
-
- # Override the default request headers:
- #DEFAULT_REQUEST_HEADERS = {
- # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
- # 'Accept-Language': 'en',
- #}
-
- # Enable or disable spider middlewares
- # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html
- #SPIDER_MIDDLEWARES = {
- # 'DangDang_Spider.middlewares.DangdangSpiderSpiderMiddleware': 543,
- #}
-
- # Enable or disable downloader middlewares
- # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
- # 打开下载管道
- DOWNLOADER_MIDDLEWARES = {
- 'DangDang_Spider.middlewares.DangdangSpiderDownloaderMiddleware': 423,
- 'DangDang_Spider.middlewares.DangdangSpiderRefererMiddleware':1
- }
-
- # Enable or disable extensions
- # See https://doc.scrapy.org/en/latest/topics/extensions.html
- #EXTENSIONS = {
- # 'scrapy.extensions.telnet.TelnetConsole': None,
- #}
-
- # Configure item pipelines
- # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
- ITEM_PIPELINES = {
- 'DangDang_Spider.pipelines.MongoPipeline': 300, # 实现保存数据到mongodb
- 'DangDang_Spider.pipelines.FilePipeline': 400, # 实现保存数据到excel
- 'DangDang_Spider.pipelines.SaveImagePipeline':450, # 调用scrapy内部ImagesPipeline实现图片下载
- 'DangDang_Spider.pipelines.PicturePipeline':500 # 统计评论数最高的10本书,画图
- }
-
- # Enable and configure the AutoThrottle extension (disabled by default)
- # See https://doc.scrapy.org/en/latest/topics/autothrottle.html
- #AUTOTHROTTLE_ENABLED = True
- # The initial download delay
- #AUTOTHROTTLE_START_DELAY = 5
- # The maximum download delay to be set in case of high latencies
- #AUTOTHROTTLE_MAX_DELAY = 60
- # The average number of requests Scrapy should be sending in parallel to
- # each remote server
- #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
- # Enable showing throttling stats for every response received:
- #AUTOTHROTTLE_DEBUG = False
-
- # Enable and configure HTTP caching (disabled by default)
- # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
- # 使用下列,Scrapy会缓存你有的Requests!当你再次请求时,如果存在缓存文档则返回缓存文档,而不是去网站请求,这样既加快了本地调试速度,也减轻了网站的压力
- HTTPCACHE_ENABLED = True
- HTTPCACHE_EXPIRATION_SECS = 0
- HTTPCACHE_DIR = 'httpcache'
- HTTPCACHE_IGNORE_HTTP_CODES = []
- HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
-
- # Mongodb参数配置 ip/port/数据库名/集合名
- MONGODB_HOST = '127.0.0.1'
- MONGODB_PORT = 27017
- MONGODB_DBNAME = 'dangdang'
- MONGODB_DOCNAME = 'dangdang_collection'
-
- # 图片存放根目录
- IMAGES_STORE='./book_image'
pipelines.py
- # -*- coding: utf-8 -*-
-
- # Define your item pipelines here
- #
- # Don't forget to add your pipeline to the ITEM_PIPELINES setting
- # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
- from scrapy.utils.project import get_project_settings # 获取settings.py
- import pymongo
- from DangDang_Spider.items import DangdangSpiderItem
-
- import openpyxl
- import os
-
- from scrapy.pipelines.images import ImagesPipeline
- import scrapy
- from scrapy.exceptions import DropItem
- import matplotlib.pyplot as plt
-
- # 保存数据到mongodb
- class MongoPipeline(object):
- settings=get_project_settings()
- host = settings['MONGODB_HOST']
- port = settings['MONGODB_PORT']
- dbName = settings['MONGODB_DBNAME']
- collectionName = settings['MONGODB_DOCNAME']
-
- # 开始处理数据之前连接数据库
- def open_spider(self,spider):
- # 创建连接
- self.client=pymongo.MongoClient(host=self.host,port=self.port)
- # 创建数据库
- self.db=self.client[self.dbName]
- # 创建集合
- self.collection=self.db[self.collectionName]
-
- def process_item(self, item, spider):
- if isinstance(item,DangdangSpiderItem):
- # 处理数据,使每一组数据均包含应有信息
- book_name=item["book_name"]
- author=item['author']
- publisher=item['publisher']
- price=item['price']
- comments_num=item['comments_num']
- for book,au,pu,pr,co in zip(book_name,author,publisher,price,comments_num):
- data = {}
- data['book_name']=book
- data['author']=au
- data['publisher']=pu
- data['price']=pr
- data['comments_num']=co
- self.collection.insert_one(data)
- return item
-
- # 数据处理完之后关闭数据库
- def close_spider(self,spider):
- self.client.close()
-
-
- # 保存数据到表格
- class FilePipeline(object):
- def __init__(self):
- if os.path.exists("当当.xlsx"):
- self.wb = openpyxl.load_workbook("当当.xlsx") # 打开已有文件
- # 创建一张新表
- # ws=wb.create_sheet()
- self.ws = self.wb["Sheet"] # 通过名字选择表
- else:
- self.wb = openpyxl.Workbook() # 新建Excel 实例化
- self.ws = self.wb.active # 激活 worksheet
- self.ws.append(['书名','作者','出版社','价格','评论数'])
- self.ws.column_dimensions['A'].width = 55 # 列宽
- self.ws.column_dimensions['B'].width = 55
- self.ws.column_dimensions['C'].width = 25
- self.ws.column_dimensions['D'].width = 10
- self.ws.column_dimensions['E'].width = 15
-
- def process_item(self,item,spider):
- # 获取各数据列表的大小,进行排序,得到列表数据最少的长度,防止索引超出
- data_count = [len(item['book_name']), len(item['author']), len(item['publisher']), len(item['price']),
- len(item['comments_num']), ]
- # sorted列表排序,key=绝对按什么排序,reverse=True:降序;False:升序
- data_count_least = sorted(data_count, key=lambda data_num: int(data_num), reverse=False)[0]
- for i in range(data_count_least):
- line = [str(item['book_name'][i]), str(item['author'][i]), str(item['publisher'][i]), str(item['price'][i]), str(item['comments_num'][i])]
- self.ws.append(line)
- self.wb.save("当当.xlsx")
- return item
-
- # ImagesPipeLine下载图片
- class SaveImagePipeline(ImagesPipeline):
- # 下载图片
- def get_media_requests(self, item, info):
- # 循环下载图片,meta传递数据(搜索的书关键字,书名,文件的后缀),根据url准确获取其文件类型
- for i in range(len(item['image_url'])):
- yield scrapy.Request(url=item['image_url'][i],meta={'book_key':item['book_key'],'name':item['book_name'][i],'name_suffix':item['image_url'][i].split('.')[-1]})
-
- # 是否下载成功
- def item_completed(self, results, item, info):
- # results是一个元组,第一个元素是布尔类型,false:失败 true:成功
- if not results[0][0]:
- raise DropItem('下载失败') # 若结果为false,异常处理,丢弃item
- return item
-
- # 图片存放,文件重命名
- def file_path(self, request, response=None, info=None):
- # 获取meta传递的数据构建书名,如‘xxx.jpg’,‘xxx.png’ .replace('/','_')替换名称中的‘/’,防止其识别成文件夹
- book_name=request.meta['name'].replace('/','_')+'.'+request.meta['name_suffix']
- # 按搜索类型分别存到对应的文件夹下
- file_name=u'{0}/{1}'.format(request.meta['book_key'],book_name)
- return file_name
-
- # 提取评论数前10的书,并画水平条形图
- class PicturePipeline(object):
- comments_num=[]
- book_name=[]
- book_name_sorted=[]
- comments_num_ten=[]
- def process_item(self,item,spider):
- self.get_plot(item['book_name'],item['comments_num'])
- return item
-
- def get_plot(self, name_list, comments_num_list):
- # 获取所有的数据
- for comment,name in zip(comments_num_list,name_list):
- self.comments_num.append(comment)
- self.book_name.append(name)
- # 将书名和评论数组成字典
- book_dict= dict(zip(self.comments_num,self.book_name))
- # 按照字典的键进行倒序排序
- comments_num_sorted_list=sorted(book_dict.keys(),key=lambda num:int(num.split('条')[0]),reverse=True)
- # 获取评论数最高的10本书
- for i in range(10):
- for key in book_dict.keys():
- if comments_num_sorted_list[i]==key:
- self.book_name_sorted.append(book_dict[key])
- continue
-
- # 使用matplotlib.pyplot画水平条形图
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用黑体显示中文
- plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
- # 默认的像素:[6.0,4.0],分辨率为100,图片尺寸为 600*400 ; 修改后图片尺寸为:2000*800
- plt.rcParams['figure.figsize']=(10.0,4.0) # 设置figure_size尺寸
- plt.rcParams['figure.dpi'] = 200 # 分辨率
- for i in range(10):
- self.comments_num_ten.append(int(comments_num_sorted_list[i].split('条')[0]))
- # width列表元素类型不能为str 故此转换为整形:int(comments_num_sorted_list[i].split('条')[0])
- plt.barh(range(10),width=self.comments_num_ten,label='评论数',color='red',alpha=0.8,height=0.7) # 从下往上画
- # 在柱状图上显示具体数值, ha参数控制水平对齐方式, va控制垂直对齐方式
- for y,x in enumerate(self.comments_num_ten):
- plt.text(x+1500,y-0.2,'%s'%x,ha='center',va='bottom')
- # 为Y轴设置坐标值
- plt.yticks(range(10),self.book_name_sorted,size=8)
- # 为坐标轴设置名称
- plt.ylabel('书名')
- # 设置标题
- plt.title('评论数前10的书籍')
- # 显示图例
- plt.legend()
- plt.show()
-
middlewares.py
- from scrapy import signals
-
- # 设置referer防止反爬
- class DangdangSpiderRefererMiddleware(object):
- @classmethod
- def process_request(self,request,spider):
- referer=request.url
- if referer:
- request.headers['referer']=referer
1. 自定义的pipeline,需在settings.py中进行设置
- ITEM_PIPELINES = {
- 'DangDang_Spider.pipelines.MongoPipeline': 300, # 实现保存数据到mongodb
- 'DangDang_Spider.pipelines.FilePipeline': 400, # 实现保存数据到excel
- 'DangDang_Spider.pipelines.SaveImagePipeline':450, # 调用scrapy内部ImagesPipeline实现图片下载
- 'DangDang_Spider.pipelines.PicturePipeline':500 # 统计评论数最高的10本书,画图
- }
2. 使用ImagesPipeLine下载图片时,需在settings.py中设置图片存放目录
- # 图片存放根目录
- IMAGES_STORE='./book_image'
3. 设置referer防止反爬,需在settings.py中进行设置,其运行级别设为1,优先执行
- # 打开下载管道
- DOWNLOADER_MIDDLEWARES = {
- 'DangDang_Spider.middlewares.DangdangSpiderDownloaderMiddleware': 423,
- 'DangDang_Spider.middlewares.DangdangSpiderRefererMiddleware':1
- }
4. 画水平条形图matplotlib.pyplot.barh(y, width,label=, height=0.8,color='red',align='center')
width:代表条形图的宽度,即每个条形图具体的数值,其值若为str会出现错误,需进行转化
5. 图片在进行存储时需指定其文件类型(.jpg/.png等根据实际获取),避免图片保存后未能识别出文件类型,导致查看繁琐
6. 进行图片保存时,发现文件存储错乱(图片应该都在C++这个文件夹下,结果莫名多出几个文件夹),debug发现文件名中存在‘/’,系统进行了识别,在此做了简单处理,消除此现象
1. 项目
2. 数据写入到表格
3. 下载图片
4. 画水平条形图
在执行PicturePipeline画图时,会报错:ValueError: shape mismatch: objects cannot be broadcast to a single shape
暂未找到原因,有大神了解的麻烦告知,感谢
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。