赞
踩
The architecture of the proposed Target-Specific Transformation Networks (TNet) is shown in Fig. 1.
所提出的目标特定变换网络(TNet)的架构如图1所示。
Apart from sentence level sentiment classification (Kim, 2014; Shi et al., 2018), aspect/target level sentiment classification is also an important research topic in the field of sentiment analysis. The early methods mostly adopted supervised learning approach with extensive hand-coded features (Blair-Goldensohn et al., 2008; Titov and McDonald, 2008; Yu et al., 2011; Jiang et al.,2011; Kiritchenko et al., 2014; Wagner et al.,2014; Vo and Zhang, 2015), and they fail to model the semantic relatedness between a target and its context which is critical for target sentiment analysis. Dong et al. (2014) incorporate the target information into the feature learning using dependency trees. As observed in previous works, the performance heavily relies on the quality of dependency parsing.
除了句子级别的情感分类(Kim,2014; Shi et al。,2018)之外,方面/目标级别的情感分类也是情感分析领域的重要研究课题。 早期方法大多采用具有广泛手工编码功能的监督学习方法(Blair-Goldensohn等,2008; Titov和McDonald,2008; Yu等,2011; Jiang等,2011; Kiritchenko等,2014 ; Wagner et al。,2014; Vo and Zhang,2015),他们未能对目标和其上下文之间的语义相关性进行建模,这对于目标情感分析至关重要。 董等。 (2014年)使用依赖树将目标信息纳入特征学习。 正如以前的工作所观察到的,性能在很大程度上取决于依赖项解析的质量。
Tang et al. (2016a) propose to split the context into two parts and associate target with contextual features separately. Similar to(Tang et al., 2016a), Zhang et al. (2016) develop a three-way gated neural network to model the interaction between the target and its surrounding contexts. Despite the advantages of jointly modeling target and context, they are not capable of capturing long-range information when some critical context information is far from the target. To overcome this limitation, researchers bring in the attention mechanism to model target-context association (Tang et al., 2016a, b; Wang et al., 2016;Yang et al., 2017; Liu and Zhang, 2017; Ma et al.,2017; Chen et al., 2017; Zhang et al., 2017; Tayet al., 2017). Compared with these methods, our TNet avoids using attention for feature extraction so as to alleviate the attended noise.
Tang等。 (2016a)提出将上下文分为两个部分,并将目标与上下文特征分别关联。 类似于(Tang等人,2016a),Zhang等人。 (2016)开发了一种三向门控神经网络,以对目标与其周围环境之间的相互作用进行建模。 尽管可以对目标和上下文进行联合建模的优点,但是当某些关键上下文信息离目标很远时,它们就无法捕获远程信息。 为了克服这一限制,研究人员引入了注意力机制来建立目标-上下文关联的模型(Tang等人,2016a,b; Wang等人,2016; Yang等人,2017; Liu和Zhang,2017; Ma等人,2017)。 (2017); Chen等,2017; Zhang等,2017; Tayet等,2017)。 与这些方法相比,我们的TNet避免了对特征提取的注意力,从而减轻了人为干扰。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。