赞
踩
Non-Local neural networks
PDF: https://arxiv.org/pdf/1711.07971.pdf
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
Non-Local Neural Network和Non-Local Means非局部均值去噪滤波有点相似。普通的滤波都是3×3的卷积核,然后在整个图片上进行移动,处理的是3×3局部的信息。Non-Local Means操作则是结合了一个比较大的搜索范围,并进行加权。
Non-local 操作可以表示为
其中
g函数是一个线性转换
f函数用于计算i和j相似度的函数, 文中列举中四种具体实现
Gaussian:
Embedded Gaussian:
Dot product:
Concatenation:
汇总起来就是
import torch import torch.nn as nn import torchvision class NonLocalBlock(nn.Module): def __init__(self, channel): super(NonLocalBlock, self).__init__() self.inter_channel = channel // 2 self.conv_phi = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1,padding=0, bias=False) self.conv_theta = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False) self.conv_g = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False) self.softmax = nn.Softmax(dim=1) self.conv_mask = nn.Conv2d(in_channels=self.inter_channel, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=False) def forward(self, x): # [N, C, H , W] b, c, h, w = x.size() # [N, C/2, H * W] x_phi = self.conv_phi(x).view(b, c, -1) # [N, H * W, C/2] x_theta = self.conv_theta(x).view(b, c, -1).permute(0, 2, 1).contiguous() x_g = self.conv_g(x).view(b, c, -1).permute(0, 2, 1).contiguous() # [N, H * W, H * W] mul_theta_phi = torch.matmul(x_theta, x_phi) mul_theta_phi = self.softmax(mul_theta_phi) # [N, H * W, C/2] mul_theta_phi_g = torch.matmul(mul_theta_phi, x_g) # [N, C/2, H, W] mul_theta_phi_g = mul_theta_phi_g.permute(0,2,1).contiguous().view(b,self.inter_channel, h, w) # [N, C, H , W] mask = self.conv_mask(mul_theta_phi_g) out = mask + x return out if __name__=='__main__': model = NonLocalBlock(channel=16) print(model) input = torch.randn(1, 16, 64, 64) out = model(input) print(out.shape)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。