当前位置:   article > 正文

机器学习-线性回顾

机器学习-线性回顾

线性回归

1. 简介

"""
简介:
	定义:
		利用回归方程对一个或多个自变量(特征值)和因变量(目标值)之间关系 进行建模的一种分析方式
	公式:
		见下图
	分类:
		一元线性回归:
			目标值与一个因变量有关系
		多远线性回归:
			目标值与多个因变量有关系
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

线性回归公式. 见下图
在这里插入图片描述

2. 线性回归问题求解

"""
线性回归API:
	from sklearn.linear_model import LinearRegression

损失函数:
	误差概念:
		用预测值y-真实值y = 误差
	衡量每个样本预测值与真实值效果的函数
		代价函数, 成本函数, 目标函数
	种类:
		均方误差 MSE
		平均绝对误差 MAE
		均方根误差 RMSE
正规方程法:
	线性回归最小而成损失函数
		J(w)= ||Xw−y||₂² 取值最小
"""
# 1.导入依赖包
# from sklearn.datasets import load_boston # 数据集已废弃
from sklearn.preprocessing import StandardScaler  # 特征处理
from sklearn.model_selection import train_test_split  # 数据集划分
from sklearn.linear_model import LinearRegression  # 正规方程的回归模型
from sklearn.linear_model import SGDRegressor  # 梯度下降的回归模型
from sklearn.metrics import mean_squared_error  # 均方误差评估
from sklearn.linear_model import Ridge, RidgeCV
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings('ignore')

# 正规方程法
def linearRegr():
    """
    正规方程法
    :return:
    """
    # 2.数据预处理
    # 2.1 获取数据
    data_url = "http://lib.stat.cmu.edu/datasets/boston"
    raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
    data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
    target = raw_df.values[1::2, 2]
    # 2.2 数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data, target, random_state=22)
    # 2.3 特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 3.模型训练,机器学习-线性回归
    # 3.1 实例化模型(正规方程)
    estimator = LinearRegression()
    # 3.2 模型训练
    estimator.fit(x_train, y_train)
    # 4.模型预测
    y_predict = estimator.predict(x_test)
    print("预测值为:", y_predict)
    print("模型的权重系数为:", estimator.coef_)
    # 5.模型评估,均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:", error)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
"""
梯度下降法:
	梯度:
		单变量函数中:
			梯度就是某一点的切线的斜率
			梯度的方向为函数增长最快的方向
		多变量函数中:
			梯度就是某一个点的偏导数
			有方向: 偏导数分量的向量方向
	沿着梯度下降的方向求解极小值
	公式:
		见下图
		α: 学习率(步长)不能太大,也不能太小. 机器学习中:0.001~0.01
		梯度是上升最快的方向, 我们需要是下降最快的方向, 所以需要加负号
	
	梯度下降优化过程:
		1. 给定初始位置 步长(学习率)
		2. 计算该点当前的梯度的负方向
		3. 向该负方向移动步长
			步长决定了在梯度下降迭代过程中, 每一步沿梯度负方向前进的长度
			学习率太小,下降的速度会慢
			学习率太大, 容易造成错过最低点, 产生下降过程中的震荡,甚至梯度爆炸
		4. 重复 2-3 步直至收敛
			两次差距小于指定的阈值
			达到指定的迭代次数
	梯度下降法分类:
		全体度下降算法 FGD
			每次迭代时, 使用全部样本的梯度值
				特点: 训练速度较慢
		随机梯度下降算法 SGD
			每次迭代时, 随机选择并使用一个样本梯度值
				特点: 简单,高效,不稳定
		小批量梯度下降算法 mini-batch
			每次迭代时, 随机选择并使用小批量的样本梯度值
				特点: 表现也正好居于SG 和FG 二者之间
		随机平均梯度下降算法 SAG
			每次迭代时, 随机选择一个样本的梯度值和以往样本的梯度值的均值
				特点: 训练初期表现不佳,优化速度较慢	
"""
from sklearn.preprocessing import StandardScaler  # 特征处理
from sklearn.model_selection import train_test_split  # 数据集划分
from sklearn.linear_model import LinearRegression  # 正规方程的回归模型
from sklearn.linear_model import SGDRegressor  # 梯度下降的回归模型
from sklearn.metrics import mean_squared_error  # 均方误差评估
from sklearn.linear_model import Ridge, RidgeCV
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

# 梯度下降法
def SGDRegr():
    """
    梯度下降法
    :return:
    """
    # 2.数据预处理
    # 2.1 获取数据
    data_url = "http://lib.stat.cmu.edu/datasets/boston"
    raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
    data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
    target = raw_df.values[1::2, 2]
    # 2.2 数据集划分
    x_train, x_test, y_train, y_test = train_test_split(data, target, random_state=22)
    # 2.3 特征工程-标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 3.模型训练,机器学习-线性回归
    # 3.1 实例化模型(梯度下降法)
    estimator = SGDRegressor()
    # estimator = SGDRegressor(max_iter=1000, learning_rate="constant", eta0=0.001)
    # 3.2 模型训练
    estimator.fit(x_train, y_train)
    # 4.模型预测
    y_predict = estimator.predict(x_test)
    print("预测值为:", y_predict)
    print("模型的权重系数为:", estimator.coef_)
    print("模型的偏置为:", estimator.intercept_)
    # 5.模型评估, 均方误差
    error = mean_squared_error(y_test, y_predict)
    print("误差为:", error)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

梯度下降法, 公式见下图
在这里插入图片描述

3. 欠拟合与过拟合

"""
欠拟合与过拟合
	欠拟合:
		模型在训练集上表现不好,在测试集上也表现不好。模型过于简单
		出现原因
			学习到数据的特征过少
		解决方法
			添加其他特征
			添加多项式特征项
	过拟合:
		模型在训练集上表现好,在测试集上表现不好。模型过于复杂
		出现原因
			原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点
		解决方法
			重新清洗数据
			增大数据的训练量
			正则化
			减少特征维度,防止维灾难
"""
def underFitting():
    """
    欠拟合
    :return:
    """
    # 2.准备数据x y(增加上噪声)
    np.random.seed(666)
    x = np.random.uniform(-3, 3, size=100)
    y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)
    # 3 训练模型
    # 3.1 实例化线性回归模型
    estimator = LinearRegression()
    # 3.2 模型训练
    X = x.reshape(-1, 1)
    estimator.fit(X, y)
    # 4 模型预测
    y_predict = estimator.predict(X)
    # 5 模型评估,计算均方误差
    # 5.1 模型评估MSE
    myret = mean_squared_error(y, y_predict)
    print('myret-->', myret)
    # 5.2 展示效果
    plt.scatter(x, y)
    plt.plot(x, y_predict, color='r')
    plt.show()


def fitting():
    """
    拟合
    :return:
    """
    # 2.准备数据x y(增加上噪声)
    np.random.seed(666)
    x = np.random.uniform(-3, 3, size=100)
    y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)
    # 3.模型训练
    # 3.1 实例化线性回归模型
    estimator = LinearRegression()
    # 3.2 模型训练
    X = x.reshape(-1, 1)
    # print(‘X.shape-->’, X.shape)
    X2 = np.hstack([X, X ** 2])  # 数据增加二次项
    estimator.fit(X2, y)
    # 4.模型预测
    y_predict = estimator.predict(X2)
    # 5.模型评估,计算均方误差
    myret = mean_squared_error(y, y_predict)
    print('myret-->', myret)
    # 6 展示效果
    plt.scatter(x, y)
    # 画图plot折线图时 需要对x进行排序, 取x排序后对应的y值
    plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')
    plt.show()


def overFitting():
    """
    过拟合
    :return:
    """
    # 2.准备数据x y(增加上噪声)
    np.random.seed(666)
    x = np.random.uniform(-3, 3, size=100)
    y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)
    # 3 训练模型
    # 3.1 实例化线性回归模型
    estimator = LinearRegression()
    # 3.2 模型训练
    X = x.reshape(-1, 1)
    # print(‘X.shape-->’, X.shape)
    X3 = np.hstack([X, X ** 2, X ** 3, X ** 4, X ** 5, X ** 6, X ** 7, X ** 8, X ** 9, X ** 10])  # 数据增加高次项
    estimator.fit(X3, y)
    # 4.模型预测
    y_predict = estimator.predict(X3)
    # 5.模型评估,计算均方误差
    # 5.1 模型评估MSE
    myret = mean_squared_error(y, y_predict)
    print('myret-->', myret)
    # 5.2 展示效果
    plt.scatter(x, y)
    # 画图时输入的x数据: 要求是从小到大
    plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')
    plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
"""
正则化:
		在模型训练时,数据中有些特征影响模型复杂度、或者某个特征的异常值较多,所以要尽量减少这个特征的影响(甚至删除某个特征的影响)
		L1正则化
			α 叫做惩罚系数,该值越大则权重调整的幅度就越大,即:表示对特征权重惩罚力度就越大
			L1 正则化会使得权重趋向于 0,甚至等于 0,使得某些特征失效,达到特征筛选的目的
			from sklearn.linear_model import Lasso
		L2正则化
			α 叫做惩罚系数,该值越大则权重调整的幅度就越大,即:表示对特征权重惩罚力度就越大
			L2 正则化会使得权重趋向于 0,一般不等于 0
			from sklearn.linear_model import Ridge
"""

# 1.导入依赖包
from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler  # 特征处理
from sklearn.model_selection import train_test_split  # 数据集划分
from sklearn.linear_model import LinearRegression  # 正规方程的回归模型
from sklearn.linear_model import SGDRegressor  # 梯度下降的回归模型
from sklearn.metrics import mean_squared_error  # 均方误差评估
from sklearn.linear_model import Ridge, RidgeCV
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

def L1Regular():
    """
    L1 正则化
    :return:
    """
    # 2.准备数据x y(增加上噪声)
    np.random.seed(666)
    x = np.random.uniform(-3, 3, size=100)
    y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)
    # 3 训练模型
    # 3.1 实例化L1正则化模型 做实验:alpha惩罚力度越来越大,k值越来越小,返回会欠拟合
    estimator = Lasso(alpha=0.1)
    # 3.2 模型训练
    X = x.reshape(-1, 1)
    X3 = np.hstack([X, X ** 2, X ** 3, X ** 4, X ** 5, X ** 6, X ** 7, X ** 8, X ** 9, X ** 10])  # 数据增加二次项
    estimator.fit(X3, y)
    print('estimator.coef_', estimator.coef_)
    # 4.模型预测
    y_predict = estimator.predict(X3)
    # 5.模型评估,计算均方误差
    # 5.1 模型评估MSE
    myret = mean_squared_error(y, y_predict)
    print('myret-->', myret)
    # 5.2 展示效果
    plt.scatter(x, y)
    # 画图时输入的x数据: 要求是从小到大
    plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')
    plt.show()


# 1.导入依赖包
from sklearn.linear_model import Ridge


def L2Regular():
    """
    L2 正则化
    :return:
    """
    # 2.准备数据x y(增加上噪声)
    np.random.seed(666)
    x = np.random.uniform(-3, 3, size=100)
    y = 0.5 * x ** 2 + x + 2 + np.random.normal(0, 1, size=100)
    # 3.训练模型
    # 3.1 实例化L2正则化模型
    estimator = Ridge(alpha=0.1)
    # 3.2 模型训练
    X = x.reshape(-1, 1)
    X3 = np.hstack([X, X ** 2, X ** 3, X ** 4, X ** 5, X ** 6, X ** 7, X ** 8, X ** 9, X ** 10])  # 数据增加二次项
    estimator.fit(X3, y)
    print('estimator.coef_', estimator.coef_)
    # 4.模型预测
    y_predict = estimator.predict(X3)
    # 5.模型评估,计算均方误差
    # 5.1 模型评估,MSE
    myret = mean_squared_error(y, y_predict)
    print('myret-->', myret)
    # 5.2 展示效果
    plt.scatter(x, y)
    # 画图时输入的x数据: 要求是从小到大
    plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')
    plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87

L1正则化, 公式为
在这里插入图片描述
L2正则化, 公式为
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/949084
推荐阅读
相关标签
  

闽ICP备14008679号