当前位置:   article > 正文

c++ unordered_set/unordered_map的底层理解及其实现,位图实现及其应用,布隆过滤器的实现及其应用,哈希切分的应用_unorderedmap底层实现

unorderedmap底层实现

一、unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,

1.1 unordered_map

1.1.1 unordered_map的文档介绍

unordered_map在线文档说明

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
  6. 它的迭代器至少是前向迭代器。

1.1.2 unordered_map的接口说明

接口详见官方文档

  1. unordered_map的构造
函数声明 功能介绍
unordered_map 构造不同格式的unordered_map对象
  1. unordered_map的容量

在这里插入图片描述

  1. unordered_map的迭代器

在这里插入图片描述

  1. unordered_map的元素访问
函数声明 功能介绍
operator[] 返回与key对应的value,没有一个默认值
  1. unordered_map的查询

函数声明 功能介绍
iterator find(const K& key) 返回key在哈希桶中的位置
size_t count(const K& key) 返回哈希桶中关键码为key的键值对的个数

  1. unordered_map的修改操作

在这里插入图片描述

  1. unordered_map的桶操作

在这里插入图片描述

1.2 unordered_set

unordered_set在线文档说明

二、底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

2.1 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置- 进行存放。
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。

该方式即为哈希(散列)方法**,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)**
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
在这里插入图片描述
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。

2.2 哈希冲突

对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) ==Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

2.3 哈希函数

  1. 直接定址法–(常用)
    取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况

  2. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址。

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突。

2.4 哈希冲突解决

2.4.1 闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

  1. 线性探测
    线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
    • 插入

      • 通过哈希函数获取待插入元素在哈希表中的位置
      • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
        在这里插入图片描述
    • 删除
      采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{
   EMPTY, EXIST, DELETE};
  • 1
  • 2
  • 3
  • 4

线性探测优点:实现非常简单,
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

  1. 二次探测
    线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 )% m, 或者: H i H_i Hi = ( H 0 H_0 H0 - i 2 i^2 i2 )% m。其中:i =1,2,3…, H 0 H_0 H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。
    二次探测优点:二次探测大大减轻了数据堆积的问题。

  2. 闭散列的模拟实现

//闭散列
namespace CloseHash
{
   
	enum Status
	{
   
		EMPTY,
		EXIST,
		DELETE
	};

	template<class K, class V>
	struct HashData
	{
   
		pair<K, V> _data;
		Status _status = EMPTY;
	};

	template<class K, class V, class HashFunc = Hash<K>>
	class HashTable
	{
   
	public:
		HashData<K, V>* Find(const K& key)
		{
   
			if (_tables.empty())
			{
   
				return nullptr;
			}
			HashFunc hf;
			size_t start = hf(key) % _tables.size();
			size_t i = 0;
			size_t index = start;
			while (_tables[index]._status != EMPTY)
			{
   
				if (_tables[index]._status == EXIST && _tables[index]._data.first == key)
				{
   
					return &_tables[index];
				}
				else
				{
   
					i++;
					index = start + i * i;//二次探测(改变i的大小)
					//index = start + i;//线性探测
					index %= _tables.size();
				}
			}
			return nullptr;
		}
		bool insert(const pair<K, V>& kv)
		{
   	
			//查找
			HashData<K, V>* ret = Find(kv.first);
			if (ret)
			{
   
				return false;
			}

			//扩容
			//载荷因子(填入表数据的个数/表的长度)0.7最合适
			//载荷因子越大,冲突越大,效率越低,空间浪费越小
			//载荷因子越小,冲突越小,效率越高,空间浪费越大
			if (_tables.size() == 0 || _n * 10 / _tables.size() >= 7)
			{
   
				size_t newSize = _tables.size() == 0 ? 10 : 2 * _tables.size();
				HashTable tmp;
				tmp._tables.resize(newSize);
				for (size_t i = 0; i < _tables.size(); i++)
				{
   
					if (_tables[i]._status == EXIST)
					{
   
						tmp.insert(_tables[i]._data);
					}
				}

				_tables.swap(tmp._tables);
			}

			//插入
			HashFunc hf;
			size_t start = hf(kv.first) % _tables.size();
			size_t i = 0;
			size_t index = start;
			
			while (_tables[index]._status == EXIST)
			{
   
				i++;
				index = start + i*i;//二次探测(改变i的大小)
				//index = start + i;//线性探测
				index %= _tables.size();
			}

			_tables[index]._data = kv;
			_tables[index]._status = EXIST;
			_n++;
			return true;
		}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/955606
推荐阅读
相关标签
  

闽ICP备14008679号