当前位置:   article > 正文

【C++/STL】:红黑树的应用 --- 封装map和set_c++ 红黑树 stl

c++ 红黑树 stl

点击跳转至文章:【C++】:红黑树深度剖析 — 手撕红黑树!

前言

map 和 set 的底层本质上还是复用通过对红黑树的改造,再分别套上一层 map 和 set 的 “壳子”,以达到 “一树二用” 的目的

在改造红黑树的过程中,我大概归纳了以下几个需要重点解决的问题:

(1) 对红黑树节点的改造。关联式容器中存储的是<key, value>的键值对,K为key的类型,如果是 set 则是 K,如果是map,则为pair<K, V>。如何用一个节点结构控制两种类型,使用类模板参数T

(2) 在插入操作时,如何完成数据的比较。由于我们的节点类型的泛型,如果是 set 则是 K,如果是map,则为pair<K, V>,而pair的比较是由 first 和 second 共同决定的,这显然不符合要求。因此插入数据时不能直接比较,要在 set 和 map 类中实现一个 KeyOfT 的仿函数,以便单独获取两个类型中的 key 数据

(3) 在红黑树中实现普通迭代器和const迭代器,再套上 “壳子”

(4) 关于 key 的修改问题。在STL库中,set 和 map 的 key 都是不能修改的,因为要符合二叉搜索树的特性,但是 map 中的 value 又是可以修改的。这个问题需要单独处理。

(5) 红黑树相关接口的改造。其中包括对 Find 和 Insert 函数的改造,特别是 Insert,因为在 map 里实现 operator[] 时需要依赖 Insert 函数。

说明:如果大家要自己动手实现封装,可以按照上面五个问题的流程进行实现。但是在本篇文章中由于展示等的原因,无法按照上面的步骤

一,红黑树的改造

1. 红黑树的主体框架

(1) K 是给find,erase用的,T 是给节点,insert用的

(2) KeyOfT 是由于下面需要比较,但是比较时不知道T的类型, set是key类型的比较,map是pair类型的比较,要统一变成key的比较

template <class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node; //节点
public:
	typedef RBTreeIterator<T, T&, T*> Iterator; //普通迭代器
	typedef RBTreeIterator<T, const T&, const T*> ConstIterator; //const 迭代器

	//其他功能的实现……
	
private:
	Node* _root = nullptr;
};

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

2. 对红黑树节点结构的改造

//枚举颜色
enum Colour
{
	RED,
	BLACK
};

//节点类
template <class T>
struct RBTreeNode
{
	T _data;

	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;

	//pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const T& data)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
		, _col(BLACK)
	{}
};

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

3. 红黑树的迭代器

3.1 迭代器类

//迭代器类
template <class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	bool operator!=(const Self& s)
	{
		return s._node != _node;
	}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	//从局部的某一个过程考虑
	Self& operator++()
	{
		if (_node->_right)
		{
			//右不为空,右子树的最左节点就是下一个访问的节点
			Node* leftMost = _node->_right;
			while (leftMost->_left)
				leftMost = leftMost->_left;

			_node = leftMost;
		}
		else
		{
			//右为空,代表当前节点所在的子树已经访问完了,下一个访问的节点是祖先
			//沿着到根节点的那个路径查找,孩子是父亲左的那个祖先节点就是下一个访问的节点

			Node* cur = _node;
			Node* parent = cur->_parent;
			//循环找祖先
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60

迭代器中最复杂的就是 operator++()的实现,它与原先的 vector/list 不同,红黑树的迭代器是要完成二叉树的中序遍历

为了完成二叉树的中序遍历,我们需要从局部的某一过程考虑,就是假设 it 已经走到了某一节点,要找到下一个访问的节点,分为两种情况:

(1) 当前节点的右子树不为空

如下图,假设 it 已经到达了13节点,说明此时13的左子树已经访问完了,右子树不为空,下一个要访问的节点就是右子树的最左节点15

在这里插入图片描述

(2) 当前节点的右子树为空

如下图,假设 it 此时到达了15节点,它的右子树为空,下一个访问哪个节点呢?有些人单纯的认为是15的父亲17,其实是错误的

那假设 it 到达6节点上呢,6的右为空,但是根据中序遍历的顺序,6的父亲1已经访问过了。

在这里插入图片描述

其实此时是要找当前节点的祖先,父亲也是祖先之一

右为空,代表当前节点所在的子树已经访问完了,下一个访问的节点是祖先,是哪个祖先呢?沿着到根节点的那个路径查找,孩子是父亲左的那个祖先节点就是下一个访问的节点

(a) 假设此时走到了15节点,下一个访问的节点是17,cur 是 parent 的左,parent 就是下一个要访问的那个祖先节点;

在这里插入图片描述

(b) 假设此时走到了6节点,下一个访问的节点是8,但是此时 cur 是 parent 的右,不满足条件,继续向上查找,cur = parent,parent = parent->_parent,这时 cur 在1,parent 在8,cur 是 parent 的左,parent 就是下一个要访问的那个祖先节点

在这里插入图片描述

3.2 Begin() 和 End()

//中序遍历,找树的最左节点
Iterator Begin()
{
	//Node* cur = _root;
	Node* leftMost = _root;

	while (leftMost->_left)
		leftMost = leftMost->_left;

	return Iterator(leftMost);
}

Iterator End()
{
	return Iterator(nullptr);
}

ConstIterator Begin()const
{
	//Node* cur = _root;
	Node* leftMost = _root;

	while (leftMost->_left)
		leftMost = leftMost->_left;

	return ConstIterator(leftMost);
}

ConstIterator End()const
{
	return ConstIterator(nullptr);
}

Iterator Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_data > key)
			cur = cur->_left;
		else if (cur->_data < key)
			cur = cur->_right;
		else
			return Iterator(cur);
	}
	return End();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

四,红黑树相关接口的改造

4.1 Find 函数的改造

查找成功,返回查找到的那个节点的迭代器,查找失败,就返回 nullptr。

Iterator Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_data > key)
			cur = cur->_left;
		else if (cur->_data < key)
			cur = cur->_right;
		else
			return Iterator(cur);
	}
	return End();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

4.2 Insert 函数的改造

map 里的 operator[] 需要依赖 Insert 的返回值

pair<Iterator, bool> Insert(const T& data)
{
	if (_root == nullptr)
	{
		_root = new Node(data);
		return make_pair(Iterator(_root), true);
	}

	KeyOfT kot;
	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (kot(cur->_data) > kot(data))
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (kot(cur->_data) < kot(data))
		{
			parent = cur;
			cur = cur->_right;
		}
		else
			return make_pair(Iterator(cur), false);
	}
	cur = new Node(data);
	Node* newnode = cur;

 	//此处省略变色+旋转部分的代码……
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

五,红黑树改造的完整代码

说明:由于代码太长,影响展示效果,所以插入部分的 变色+旋转 的代码此处省略,和红黑树的基本一模一样,请前往【C++】:红黑树深度剖析 — 手撕红黑树!

RBTree.h

#include <iostream>
#include <assert.h>
using namespace std;

//枚举颜色
enum Colour
{
	RED,
	BLACK
};

//节点类
template <class T>
struct RBTreeNode
{
	T _data;

	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;

	//pair<K, V> _kv;
	Colour _col;

	RBTreeNode(const T& data)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
		, _col(BLACK)
	{}
};

//迭代器类
template <class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	bool operator!=(const Self& s)
	{
		return s._node != _node;
	}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	//从局部的某一个过程考虑
	Self& operator++()
	{
		if (_node->_right)
		{
			//右不为空,右子树的最左节点就是下一个访问的节点
			Node* leftMost = _node->_right;
			while (leftMost->_left)
				leftMost = leftMost->_left;

			_node = leftMost;
		}
		else
		{
			//右为空,代表当前节点所在的子树已经访问完了,下一个访问的节点是祖先
			//沿着到根节点的那个路径查找,孩子是父亲左的那个祖先节点就是下一个访问的节点

			Node* cur = _node;
			Node* parent = cur->_parent;
			//循环找祖先
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}
};


//K 是给find,erase用的,T 是给节点,插入用的
// KeyOfT 是由于下面需要比较,但是比较时不知道T的类型,
// set是key类型的比较,map是pair类型的比较,要统一变成key的比较

template <class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef RBTreeIterator<T, T&, T*> Iterator;
	typedef RBTreeIterator<T, const T&, const T*> ConstIterator;


	//中序遍历,找树的最左节点
	Iterator Begin()
	{
		//Node* cur = _root;
		Node* leftMost = _root;

		while (leftMost->_left)
			leftMost = leftMost->_left;

		return Iterator(leftMost);
	}

	Iterator End()
	{
		return Iterator(nullptr);
	}

	ConstIterator Begin()const
	{
		//Node* cur = _root;
		Node* leftMost = _root;

		while (leftMost->_left)
			leftMost = leftMost->_left;

		return ConstIterator(leftMost);
	}

	ConstIterator End()const
	{
		return ConstIterator(nullptr);
	}

	Iterator Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_data > key)
				cur = cur->_left;
			else if (cur->_data < key)
				cur = cur->_right;
			else
				return Iterator(cur);
		}
		return End();
	}

	pair<Iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			return make_pair(Iterator(_root), true);
		}

		KeyOfT kot;
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else
				return make_pair(Iterator(cur), false);
		}
		cur = new Node(data);
		Node* newnode = cur;

		//新增节点,颜色为红色
		cur->_col = RED;
		
		//此处省略变色+旋转部分的代码……
		
private:
		Node* _root = nullptr;

};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194

六,set 的封装实现

set的底层为红黑树,因此只需在set内部封装一棵红黑树,即可将该容器实现出来。

为了解决 set 中 key 值不能修改的问题,在传给 RBTree 的第二个模板参数前加 const 即可

MySet.h

#include "RBTree.h"

namespace cc
{
	template<class K>
	class set
	{
		// 获取 set 里面的 key
		struct SetOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

	public:
		typedef typename RBTree<K, const K, SetOfT>::Iterator iterator;
		typedef typename RBTree<K, const K, SetOfT>::ConstIterator const_iterator;

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		const_iterator begin()const
		{
			return _t.Begin();
		}

		const_iterator end()const
		{
			return _t.End();
		}

		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}
	private:
		RBTree<K, const K, SetOfT> _t;
	};
}

//使用 const 迭代器 
void Print(const cc::set<int>& s)
{
	auto it = s.begin();
	while (it != s.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

//测试代码
void Test_set()
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	int a[] = { 16,3,7,11,9,26,18,14,15 };
	cc::set<int> s;

		for (auto e : a)
			s.insert(e);

		for (auto e : s)
			cout << e << " ";

		cout << endl;

		Print(s);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83

在这里插入图片描述

七,map 的封装实现

map的底层结构就是红黑树,因此在map中直接封装一棵红黑树,然后将其接口包装下即可。

map 中 pair 的 first 不能修改,second 可以修改,在 pair 的第一个参数前加 const 即可

MyMap.h

#include "RBTree.h"

namespace cc
{
	template<class K, class V>
	class map
	{
		//获取 pair 中的 key
		struct MapOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<const K, V>, MapOfT>::Iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, MapOfT>::ConstIterator const_iterator;


		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		const_iterator begin()const
		{
			return _t.Begin();
		}

		const_iterator end()const
		{
			return _t.End();
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

		//给一个key,返回value的引用
		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}
	private:
		RBTree<K, pair<const K,V>, MapOfT> _t;
	};
}


//测试代码
void Test_map()
{
	cc::map<string, string> dict;

	dict.insert({ "left","左边" });
	dict.insert({ "right","右边" });
	dict.insert({ "insert","插入" });

	dict["left"] = "剩余,左边";

	cc::map<string, string>::iterator it = dict.begin();
	while (it != dict.end())
	{
		//it->first += 'x'; //err
		it->second += 'y'; //ok

		cout << it->first << ":" << it->second << endl;
		++it;
	}

	cout << endl;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/987480
推荐阅读
相关标签
  

闽ICP备14008679号